Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -43,32 +43,17 @@ geolocator = Nominatim(user_agent="skin-dashboard", timeout = 10)
|
|
| 43 |
|
| 44 |
@st.cache_resource
|
| 45 |
def load_image_model(token: str):
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
)
|
| 57 |
|
| 58 |
-
# 3) Load *just the weights* from your repo, using the config override
|
| 59 |
-
model = AutoModelForImageClassification.from_pretrained(
|
| 60 |
-
MODEL_NAME,
|
| 61 |
-
config=config,
|
| 62 |
-
use_auth_token=token,
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
# 4) Return the pipeline
|
| 66 |
-
return pipeline(
|
| 67 |
-
"image-classification",
|
| 68 |
-
model=model,
|
| 69 |
-
feature_extractor=extractor,
|
| 70 |
-
device=0, # or -1 for CPU
|
| 71 |
-
)
|
| 72 |
|
| 73 |
@st.cache_resource
|
| 74 |
def load_llm(token: str):
|
|
|
|
| 43 |
|
| 44 |
@st.cache_resource
|
| 45 |
def load_image_model(token: str):
|
| 46 |
+
"""
|
| 47 |
+
Load the pre-trained skin cancer classification model using PyTorch.
|
| 48 |
+
"""
|
| 49 |
+
try:
|
| 50 |
+
extractor = AutoFeatureExtractor.from_pretrained("Anwarkh1/Skin_Cancer-Image_Classification")
|
| 51 |
+
model = AutoModelForImageClassification.from_pretrained("Anwarkh1/Skin_Cancer-Image_Classification")
|
| 52 |
+
return pipeline("image-classification", model=model, feature_extractor=extractor, framework="pt")
|
| 53 |
+
except Exception as e:
|
| 54 |
+
st.error(f"Error loading the model: {e}")
|
| 55 |
+
return None
|
|
|
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
@st.cache_resource
|
| 59 |
def load_llm(token: str):
|