Spaces:
Running
Running
import streamlit as st | |
import torch | |
import torchvision.transforms as transforms | |
from torchvision import models | |
from PIL import Image | |
import json | |
import os | |
with open("domain_config.json", "r") as f: | |
domain_config = json.load(f) | |
class_names = list(domain_config.keys()) | |
num_classes = len(class_names) | |
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1) | |
model.classifier[1] = torch.nn.Linear(1280, num_classes) | |
model.load_state_dict(torch.load("custom_image_model.pth", map_location=torch.device('cpu'))) | |
model.eval() | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
st.title("π AI-Powered Image Categorization") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file).convert("RGB") | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
if st.button("Categorize Image"): | |
image_tensor = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(image_tensor) | |
probabilities = torch.nn.functional.softmax(output, dim=1) | |
predicted_index = torch.argmax(probabilities, dim=1).item() | |
predicted_category = class_names[predicted_index] | |
confidence = probabilities[0][predicted_index].item() | |
st.success(f"β **Predicted Category:** {predicted_category} ({confidence:.2%} confidence)") | |