Spaces:
Running
Running
File size: 1,590 Bytes
c3d8a68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
import torch
import torchvision.transforms as transforms
from torchvision import models
from PIL import Image
import json
import os
with open("domain_config.json", "r") as f:
domain_config = json.load(f)
class_names = list(domain_config.keys())
num_classes = len(class_names)
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1)
model.classifier[1] = torch.nn.Linear(1280, num_classes)
model.load_state_dict(torch.load("custom_image_model.pth", map_location=torch.device('cpu')))
model.eval()
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
st.title("π AI-Powered Image Categorization")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file).convert("RGB")
st.image(image, caption="Uploaded Image", use_column_width=True)
if st.button("Categorize Image"):
image_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
output = model(image_tensor)
probabilities = torch.nn.functional.softmax(output, dim=1)
predicted_index = torch.argmax(probabilities, dim=1).item()
predicted_category = class_names[predicted_index]
confidence = probabilities[0][predicted_index].item()
st.success(f"β
**Predicted Category:** {predicted_category} ({confidence:.2%} confidence)")
|