|
import gradio as gr |
|
import spaces |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_name = "infly/OpenCoder-8B-Instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
@spaces.GPU |
|
def generate_text(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) |
|
outputs = model.generate(inputs["input_ids"], max_length=100, num_return_sequences=1) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
iface = gr.Interface( |
|
fn=generate_text, |
|
inputs=[ |
|
gr.Textbox(label="Enter your prompt", placeholder="Start typing...", lines=5), |
|
gr.Slider(minimum=50, maximum=200, value=100, step=1, label="Max Length"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), |
|
], |
|
outputs="text", |
|
title="OpenCoder 8B Instruct", |
|
description="Generate text using the OpenCoder model. Adjust the settings and input a prompt to generate responses.", |
|
) |
|
|
|
|
|
iface.launch(share=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|