import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer # Load model and tokenizer model_name = "infly/OpenCoder-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) @spaces.GPU def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) outputs = model.generate(inputs["input_ids"], max_length=100, num_return_sequences=1) return tokenizer.decode(outputs[0], skip_special_tokens=True) iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Enter your prompt", placeholder="Start typing...", lines=5), gr.Slider(minimum=50, maximum=200, value=100, step=1, label="Max Length"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), ], outputs="text", title="OpenCoder 8B Instruct", description="Generate text using the OpenCoder model. Adjust the settings and input a prompt to generate responses.", ) # Launch the Gradio app iface.launch(share=True) # Create Gradio interface # interface = gr.Interface( # fn=generate_text, # inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), # outputs=gr.Textbox(label="Generated Text") # ) # # Launch the Gradio app # if __name__ == "__main__": # interface.launch()