File size: 4,234 Bytes
d189df6
 
 
 
 
 
13d0b4d
722177d
d189df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de1935d
d189df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921a7bd
d189df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import json
import subprocess
from threading import Thread

import torch
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

MODEL_ID = "infly/OpenCoder-8B-Instruct"
CHAT_TEMPLATE =  "ChatML"
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = 1300
#EMOJI = os.environ.get("EMOJI")
#DESCRIPTION = os.environ.get("DESCRIPTION")


@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
    # Format history with a given chat template
    if CHAT_TEMPLATE == "ChatML":
        stop_tokens = ["<|endoftext|>", "<|im_end|>", "<|end_of_text|>", "<|eot_id|>", "assistant"]
        instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
        for human, assistant in history:
            instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant
        instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n'
    elif CHAT_TEMPLATE == "Mistral Instruct":
        stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
        instruction = '<s>[INST] ' + system_prompt
        for human, assistant in history:
            instruction += human + ' [/INST] ' + assistant + '</s>[INST]'
        instruction += ' ' + message + ' [/INST]'
    else:
        raise Exception("Incorrect chat template, select 'ChatML' or 'Mistral Instruct'")
    print(instruction)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=90.0, skip_prompt=True, skip_special_tokens=True)
    enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True, max_length=CONTEXT_LENGTH)
    input_ids, attention_mask = enc.input_ids, enc.attention_mask

    if input_ids.shape[1] > CONTEXT_LENGTH:
        input_ids = input_ids[:, -CONTEXT_LENGTH:]

    generate_kwargs = dict(
        {"input_ids": input_ids.to(device), "attention_mask": attention_mask.to(device)},
        streamer=streamer,
        do_sample=True,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        top_p=top_p
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    outputs = []
    for new_token in streamer:
        outputs.append(new_token)
        if new_token in stop_tokens:
            break
        yield "".join(outputs)


# Load model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    device_map="auto",
    trust_remote_code=True
)

css = """
.message-row {
    justify-content: space-evenly !important;
}
.message-bubble-border {
    border-radius: 6px !important;
}
.message-buttons-bot, .message-buttons-user {
    right: 10px !important;
    left: auto !important;
    bottom: 2px !important;
}
.dark.message-bubble-border {
    border-color: #15172c !important;
}
.dark.user {
    background: #10132c !important;
}
.dark.assistant.dark, .dark.pending.dark {
    background: #020417 !important;
}
"""

# Create Gradio interface
gr.ChatInterface(
    predict,
    title=EMOJI + " " + MODEL_NAME,
    description=DESCRIPTION,
    additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
    additional_inputs=[
        gr.Textbox("Perform the task to the best of your ability.", label="System prompt"),
        gr.Slider(0, 1, 0.8, label="Temperature"),
        gr.Slider(128, 4096, 512, label="Max new tokens"),
        gr.Slider(1, 80, 40, label="Top K sampling"),
        gr.Slider(0, 2, 1.1, label="Repetition penalty"),
        gr.Slider(0, 1, 0.95, label="Top P sampling"),
    ],
    theme = gr.themes.Ocean(
    secondary_hue="emerald"
    ),
    css=css,
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    chatbot=gr.Chatbot(
        scale=1,
        show_copy_button=True
    )
).queue().launch()