MegaTronX commited on
Commit
de1935d
·
verified ·
1 Parent(s): 2bd5677

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -21
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import gradio as gr
2
- import spaces
3
  from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
  # Load model and tokenizer
@@ -7,34 +6,25 @@ model_name = "infly/OpenCoder-8B-Instruct"
7
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
8
  model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
9
 
10
- @spaces.GPU
11
  def generate_text(prompt):
12
  inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
13
- outputs = model.generate(inputs["input_ids"], max_length=100, num_return_sequences=1)
 
 
 
 
 
14
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
15
 
 
16
  iface = gr.Interface(
17
  fn=generate_text,
18
- inputs=[
19
- gr.Textbox(label="Enter your prompt", placeholder="Start typing...", lines=5)
20
- #gr.Slider(minimum=50, maximum=200, value=100, step=1, label="Max Length"),
21
- #gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
22
- ],
23
  outputs="text",
24
  title="OpenCoder 8B Instruct",
25
- description="Generate text using the OpenCoder model. Adjust the settings and input a prompt to generate responses.",
26
  )
27
 
28
  # Launch the Gradio app
29
- iface.launch(share=True)
30
-
31
- # Create Gradio interface
32
- # interface = gr.Interface(
33
- # fn=generate_text,
34
- # inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
35
- # outputs=gr.Textbox(label="Generated Text")
36
- # )
37
-
38
- # # Launch the Gradio app
39
- # if __name__ == "__main__":
40
- # interface.launch()
 
1
  import gradio as gr
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
  # Load model and tokenizer
 
6
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
7
  model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
8
 
9
+ # Define the text generation function
10
  def generate_text(prompt):
11
  inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
12
+ outputs = model.generate(
13
+ inputs["input_ids"],
14
+ attention_mask=inputs["attention_mask"], # Add attention mask
15
+ max_length=50, # Reduce max_length to conserve memory
16
+ num_return_sequences=1
17
+ )
18
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
19
 
20
+ # Create the Gradio interface
21
  iface = gr.Interface(
22
  fn=generate_text,
23
+ inputs=gr.Textbox(label="Enter your prompt", placeholder="Start typing...", lines=5),
 
 
 
 
24
  outputs="text",
25
  title="OpenCoder 8B Instruct",
26
+ description="Generate text using the OpenCoder model. Input a prompt to generate responses.",
27
  )
28
 
29
  # Launch the Gradio app
30
+ iface.launch()