Spaces:
Runtime error
Runtime error
Commit
·
f5dd57f
1
Parent(s):
6ca41a7
Update app.py
Browse files
app.py
CHANGED
@@ -488,6 +488,18 @@ if __name__ == "__main__":
|
|
488 |
logger.info("Starting app instance")
|
489 |
with demo:
|
490 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
gr.Markdown("## Load Inputs & Select Parameters")
|
492 |
gr.Markdown(
|
493 |
"""Enter/paste text below, or upload a file. Pick a model & adjust params (_optional_), and press **Summarize!**
|
@@ -531,18 +543,6 @@ if __name__ == "__main__":
|
|
531 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
532 |
)
|
533 |
gr.Markdown("---")
|
534 |
-
gr.Markdown("# Document Summarization with Long-Document Transformers")
|
535 |
-
gr.Markdown(
|
536 |
-
"""An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://hf.co/datasets/kmfoda/booksum). Architectures [in this demo](https://hf.co/spaces/pszemraj/document-summarization) are [LongT5-base](https://hf.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://hf.co/pszemraj/pegasus-x-large-book-summary).
|
537 |
-
|
538 |
-
**Want more performance? Run this demo from a free Google Colab GPU:**.
|
539 |
-
<br>
|
540 |
-
<a href="https://colab.research.google.com/gist/pszemraj/52f67cf7326e780155812a6a1f9bb724/document-summarization-on-gpu.ipynb">
|
541 |
-
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
542 |
-
</a>
|
543 |
-
<br>
|
544 |
-
"""
|
545 |
-
)
|
546 |
with gr.Column():
|
547 |
gr.Markdown("## Generate Summary")
|
548 |
with gr.Row():
|
|
|
488 |
logger.info("Starting app instance")
|
489 |
with demo:
|
490 |
with gr.Column():
|
491 |
+
gr.Markdown("# Document Summarization with Long-Document Transformers")
|
492 |
+
gr.Markdown(
|
493 |
+
"""An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://hf.co/datasets/kmfoda/booksum). Architectures [in this demo](https://hf.co/spaces/pszemraj/document-summarization) are [LongT5-base](https://hf.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://hf.co/pszemraj/pegasus-x-large-book-summary).
|
494 |
+
|
495 |
+
**Want more performance? Run this demo from a free Google Colab GPU:**.
|
496 |
+
<br>
|
497 |
+
<a href="https://colab.research.google.com/gist/pszemraj/52f67cf7326e780155812a6a1f9bb724/document-summarization-on-gpu.ipynb">
|
498 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
499 |
+
</a>
|
500 |
+
<br>
|
501 |
+
"""
|
502 |
+
)
|
503 |
gr.Markdown("## Load Inputs & Select Parameters")
|
504 |
gr.Markdown(
|
505 |
"""Enter/paste text below, or upload a file. Pick a model & adjust params (_optional_), and press **Summarize!**
|
|
|
543 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
544 |
)
|
545 |
gr.Markdown("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
with gr.Column():
|
547 |
gr.Markdown("## Generate Summary")
|
548 |
with gr.Row():
|