MeetJivani commited on
Commit
6ca41a7
·
1 Parent(s): 00a3991

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -10
app.py CHANGED
@@ -531,6 +531,18 @@ if __name__ == "__main__":
531
  placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
532
  )
533
  gr.Markdown("---")
 
 
 
 
 
 
 
 
 
 
 
 
534
  with gr.Column():
535
  gr.Markdown("## Generate Summary")
536
  with gr.Row():
@@ -634,16 +646,16 @@ if __name__ == "__main__":
634
  )
635
  with gr.Column():
636
  gr.Markdown("## About")
637
- # gr.Markdown(
638
- # "- Models are fine-tuned on the [🅱️ookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that generalizes well and is useful for summarizing text in academic and everyday use."
639
- # )
640
- # gr.Markdown(
641
- # "- _Update April 2023:_ Additional models fine-tuned on the [PLOS](https://hf.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) and [ELIFE](https://hf.co/datasets/pszemraj/scientific_lay_summarisation-elife-norm) subsets of the [scientific lay summaries](https://arxiv.org/abs/2210.09932) dataset are available (see dropdown at the top)."
642
- # )
643
- # gr.Markdown(
644
- # "Adjust the max input words & max PDF pages for OCR by duplicating this space and [setting the environment variables](https://hf.co/docs/hub/spaces-overview#managing-secrets) `APP_MAX_WORDS` and `APP_OCR_MAX_PAGES` to the desired integer values."
645
- # )
646
- # gr.Markdown("---")
647
 
648
  load_examples_button.click(
649
  fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
 
531
  placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
532
  )
533
  gr.Markdown("---")
534
+ gr.Markdown("# Document Summarization with Long-Document Transformers")
535
+ gr.Markdown(
536
+ """An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://hf.co/datasets/kmfoda/booksum). Architectures [in this demo](https://hf.co/spaces/pszemraj/document-summarization) are [LongT5-base](https://hf.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://hf.co/pszemraj/pegasus-x-large-book-summary).
537
+
538
+ **Want more performance? Run this demo from a free Google Colab GPU:**.
539
+ <br>
540
+ <a href="https://colab.research.google.com/gist/pszemraj/52f67cf7326e780155812a6a1f9bb724/document-summarization-on-gpu.ipynb">
541
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
542
+ </a>
543
+ <br>
544
+ """
545
+ )
546
  with gr.Column():
547
  gr.Markdown("## Generate Summary")
548
  with gr.Row():
 
646
  )
647
  with gr.Column():
648
  gr.Markdown("## About")
649
+ gr.Markdown(
650
+ "- Models are fine-tuned on the [🅱️ookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that generalizes well and is useful for summarizing text in academic and everyday use."
651
+ )
652
+ gr.Markdown(
653
+ "- _Update April 2023:_ Additional models fine-tuned on the [PLOS](https://hf.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) and [ELIFE](https://hf.co/datasets/pszemraj/scientific_lay_summarisation-elife-norm) subsets of the [scientific lay summaries](https://arxiv.org/abs/2210.09932) dataset are available (see dropdown at the top)."
654
+ )
655
+ gr.Markdown(
656
+ "Adjust the max input words & max PDF pages for OCR by duplicating this space and [setting the environment variables](https://hf.co/docs/hub/spaces-overview#managing-secrets) `APP_MAX_WORDS` and `APP_OCR_MAX_PAGES` to the desired integer values."
657
+ )
658
+ gr.Markdown("---")
659
 
660
  load_examples_button.click(
661
  fn=load_single_example_text, inputs=[example_name], outputs=[input_text]