Spaces:
Runtime error
Runtime error
Commit
·
bd9b9f2
1
Parent(s):
9f77cf7
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
-
import torch
|
4 |
|
5 |
CAPTION_MODELS = {
|
6 |
'blip-base': 'Salesforce/blip-image-captioning-base',
|
@@ -14,11 +14,14 @@ CAPTION_MODELS = {
|
|
14 |
# Create a dictionary to store loaded models
|
15 |
loaded_models = {}
|
16 |
|
17 |
-
#
|
18 |
-
def caption_image(model_choice,
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
-
model_key = (model_choice, load_in_8bit
|
22 |
|
23 |
# Check if the model is already loaded
|
24 |
if model_key in loaded_models:
|
@@ -29,7 +32,7 @@ def caption_image(model_choice, images_input, urls_input, load_in_8bit, device):
|
|
29 |
captioner = pipeline(task="image-to-text",
|
30 |
model=CAPTION_MODELS[model_choice],
|
31 |
max_new_tokens=30,
|
32 |
-
device=device, # Set the device as selected
|
33 |
model_kwargs=model_kwargs,
|
34 |
torch_dtype=dtype, # Set the floating point
|
35 |
use_fast=True
|
@@ -37,16 +40,14 @@ def caption_image(model_choice, images_input, urls_input, load_in_8bit, device):
|
|
37 |
# Store the loaded model
|
38 |
loaded_models[model_key] = captioner
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
return results
|
44 |
|
45 |
model_dropdown = gr.Dropdown(choices=list(CAPTION_MODELS.keys()), label='Select Caption Model')
|
46 |
-
image_input = gr.Image(type="pil", label="Input Image") #
|
47 |
-
url_input = gr.Text(label="Input URL")
|
48 |
load_in_8bit = gr.Checkbox(label="Load model in 8bit")
|
49 |
-
device = gr.Radio(
|
50 |
|
51 |
-
iface = gr.Interface(caption_image, inputs=[model_dropdown, image_input, url_input, load_in_8bit, device], outputs=gr.outputs.Textbox(type="
|
52 |
iface.launch()
|
|
|
1 |
+
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
|
|
4 |
|
5 |
CAPTION_MODELS = {
|
6 |
'blip-base': 'Salesforce/blip-image-captioning-base',
|
|
|
14 |
# Create a dictionary to store loaded models
|
15 |
loaded_models = {}
|
16 |
|
17 |
+
# Simple caption creation
|
18 |
+
def caption_image(model_choice, image_input, url_input, load_in_8bit, device):
|
19 |
+
if image_input is not None:
|
20 |
+
input_data = image_input
|
21 |
+
else:
|
22 |
+
input_data = url_input
|
23 |
|
24 |
+
model_key = (model_choice, load_in_8bit) # Create a tuple to represent the unique combination of model and 8bit loading
|
25 |
|
26 |
# Check if the model is already loaded
|
27 |
if model_key in loaded_models:
|
|
|
32 |
captioner = pipeline(task="image-to-text",
|
33 |
model=CAPTION_MODELS[model_choice],
|
34 |
max_new_tokens=30,
|
35 |
+
device=device, # Set the device as selected
|
36 |
model_kwargs=model_kwargs,
|
37 |
torch_dtype=dtype, # Set the floating point
|
38 |
use_fast=True
|
|
|
40 |
# Store the loaded model
|
41 |
loaded_models[model_key] = captioner
|
42 |
|
43 |
+
caption = captioner(input_data)
|
44 |
+
return [str(c['generated_text']).strip() for c in caption]
|
|
|
|
|
45 |
|
46 |
model_dropdown = gr.Dropdown(choices=list(CAPTION_MODELS.keys()), label='Select Caption Model')
|
47 |
+
image_input = gr.Image(type="pil", label="Input Image", multiple=True) # Enable multiple inputs
|
48 |
+
url_input = gr.Text(label="Input URL")
|
49 |
load_in_8bit = gr.Checkbox(label="Load model in 8bit")
|
50 |
+
device = gr.Radio(['cpu', 'cuda'], label='Select device', default='cpu')
|
51 |
|
52 |
+
iface = gr.Interface(caption_image, inputs=[model_dropdown, image_input, url_input, load_in_8bit, device], outputs=gr.interfaces.outputs.Textbox(type="text", label="Caption"))
|
53 |
iface.launch()
|