Spaces:
Runtime error
Runtime error
Commit
·
9f77cf7
1
Parent(s):
593f239
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import pipeline
|
|
|
|
| 4 |
|
| 5 |
CAPTION_MODELS = {
|
| 6 |
'blip-base': 'Salesforce/blip-image-captioning-base',
|
|
@@ -14,14 +14,11 @@ CAPTION_MODELS = {
|
|
| 14 |
# Create a dictionary to store loaded models
|
| 15 |
loaded_models = {}
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
def caption_image(model_choice,
|
| 19 |
-
if
|
| 20 |
-
input_data = image_input
|
| 21 |
-
else:
|
| 22 |
-
input_data = url_input
|
| 23 |
|
| 24 |
-
model_key = (model_choice, load_in_8bit) #
|
| 25 |
|
| 26 |
# Check if the model is already loaded
|
| 27 |
if model_key in loaded_models:
|
|
@@ -32,7 +29,7 @@ def caption_image(model_choice, image_input, url_input, load_in_8bit):
|
|
| 32 |
captioner = pipeline(task="image-to-text",
|
| 33 |
model=CAPTION_MODELS[model_choice],
|
| 34 |
max_new_tokens=30,
|
| 35 |
-
device=
|
| 36 |
model_kwargs=model_kwargs,
|
| 37 |
torch_dtype=dtype, # Set the floating point
|
| 38 |
use_fast=True
|
|
@@ -40,16 +37,16 @@ def caption_image(model_choice, image_input, url_input, load_in_8bit):
|
|
| 40 |
# Store the loaded model
|
| 41 |
loaded_models[model_key] = captioner
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
-
|
| 47 |
-
return caption_image(model_choice, image_input, url_input, load_in_8bit)
|
| 48 |
|
| 49 |
model_dropdown = gr.Dropdown(choices=list(CAPTION_MODELS.keys()), label='Select Caption Model')
|
| 50 |
-
image_input = gr.Image(type="pil", label="Input Image")
|
| 51 |
-
url_input = gr.Text(label="Input URL")
|
| 52 |
load_in_8bit = gr.Checkbox(label="Load model in 8bit")
|
|
|
|
| 53 |
|
| 54 |
-
iface = gr.Interface(
|
| 55 |
iface.launch()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
CAPTION_MODELS = {
|
| 6 |
'blip-base': 'Salesforce/blip-image-captioning-base',
|
|
|
|
| 14 |
# Create a dictionary to store loaded models
|
| 15 |
loaded_models = {}
|
| 16 |
|
| 17 |
+
# Modify caption_image to accept and process lists of images
|
| 18 |
+
def caption_image(model_choice, images_input, urls_input, load_in_8bit, device):
|
| 19 |
+
input_data = images_input if all(i is not None for i in images_input) else urls_input
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
model_key = (model_choice, load_in_8bit, device) # Update the model key to include the device
|
| 22 |
|
| 23 |
# Check if the model is already loaded
|
| 24 |
if model_key in loaded_models:
|
|
|
|
| 29 |
captioner = pipeline(task="image-to-text",
|
| 30 |
model=CAPTION_MODELS[model_choice],
|
| 31 |
max_new_tokens=30,
|
| 32 |
+
device=device, # Set the device as selected by the user
|
| 33 |
model_kwargs=model_kwargs,
|
| 34 |
torch_dtype=dtype, # Set the floating point
|
| 35 |
use_fast=True
|
|
|
|
| 37 |
# Store the loaded model
|
| 38 |
loaded_models[model_key] = captioner
|
| 39 |
|
| 40 |
+
captions = captioner(input_data) # Run the model on the batch of images
|
| 41 |
+
results = [str(caption['generated_text']).strip() for caption in captions] # Extract the captions from the outputs
|
| 42 |
|
| 43 |
+
return results
|
|
|
|
| 44 |
|
| 45 |
model_dropdown = gr.Dropdown(choices=list(CAPTION_MODELS.keys()), label='Select Caption Model')
|
| 46 |
+
image_input = gr.Image(type="pil", label="Input Image") # Now takes multiple images
|
| 47 |
+
url_input = gr.Text(label="Input URL") # Now takes multiple URLs
|
| 48 |
load_in_8bit = gr.Checkbox(label="Load model in 8bit")
|
| 49 |
+
device = gr.Radio(choices=['cpu', 'cuda'], label='Device') # Radio button for device selection
|
| 50 |
|
| 51 |
+
iface = gr.Interface(caption_image, inputs=[model_dropdown, image_input, url_input, load_in_8bit, device], outputs=gr.outputs.Textbox(type="auto", label="Caption"))
|
| 52 |
iface.launch()
|