SentAnalyst / app.py
Meckyhugging's picture
Create app.py
afc1774 verified
raw
history blame
1.45 kB
import gradio as gr
from transformers import pipeline
# Load sentiment analysis model
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
# Custom label mapping for multi-level output
label_map = {
"LABEL_0": "Very Negative",
"LABEL_1": "Negative",
"LABEL_2": "Neutral",
"LABEL_3": "Positive",
"LABEL_4": "Very Positive"
}
def advanced_sentiment_analysis(text):
# Predict sentiment
result = sentiment_pipeline(text, top_k=None)[0]
# Sum total scores for normalization (if needed)
total_score = sum([entry['score'] for entry in result])
# Build formatted output
formatted_output = ""
for entry in result:
label = label_map.get(entry['label'], entry['label'])
percentage = (entry['score'] / total_score) * 100
formatted_output += f"{label}: {percentage:.2f}%\n"
return formatted_output.strip()
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("### Welcome, please enter a sample of what you may respond or tell a customer,let's tell you how cool it is")
with gr.Row():
text_input = gr.Textbox(lines=4, placeholder="Type your message here...", label="Customer Message")
output = gr.Textbox(label="Sentiment Analysis Result")
analyze_button = gr.Button("Analyze Sentiment")
analyze_button.click(fn=advanced_sentiment_analysis, inputs=text_input, outputs=output)
demo.launch()