Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load sentiment analysis model
|
5 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
6 |
+
|
7 |
+
# Custom label mapping for multi-level output
|
8 |
+
label_map = {
|
9 |
+
"LABEL_0": "Very Negative",
|
10 |
+
"LABEL_1": "Negative",
|
11 |
+
"LABEL_2": "Neutral",
|
12 |
+
"LABEL_3": "Positive",
|
13 |
+
"LABEL_4": "Very Positive"
|
14 |
+
}
|
15 |
+
|
16 |
+
def advanced_sentiment_analysis(text):
|
17 |
+
# Predict sentiment
|
18 |
+
result = sentiment_pipeline(text, top_k=None)[0]
|
19 |
+
|
20 |
+
# Sum total scores for normalization (if needed)
|
21 |
+
total_score = sum([entry['score'] for entry in result])
|
22 |
+
|
23 |
+
# Build formatted output
|
24 |
+
formatted_output = ""
|
25 |
+
for entry in result:
|
26 |
+
label = label_map.get(entry['label'], entry['label'])
|
27 |
+
percentage = (entry['score'] / total_score) * 100
|
28 |
+
formatted_output += f"{label}: {percentage:.2f}%\n"
|
29 |
+
|
30 |
+
return formatted_output.strip()
|
31 |
+
|
32 |
+
# Gradio UI
|
33 |
+
with gr.Blocks() as demo:
|
34 |
+
gr.Markdown("### Welcome, please enter a sample of what you may respond or tell a customer,let's tell you how cool it is")
|
35 |
+
with gr.Row():
|
36 |
+
text_input = gr.Textbox(lines=4, placeholder="Type your message here...", label="Customer Message")
|
37 |
+
output = gr.Textbox(label="Sentiment Analysis Result")
|
38 |
+
analyze_button = gr.Button("Analyze Sentiment")
|
39 |
+
|
40 |
+
analyze_button.click(fn=advanced_sentiment_analysis, inputs=text_input, outputs=output)
|
41 |
+
|
42 |
+
demo.launch()
|