File size: 5,316 Bytes
36942d4
852d26e
 
 
 
 
 
 
cee13f4
f0687e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341bd22
 
 
852d26e
fc2aea6
f0687e5
852d26e
 
 
341bd22
f0687e5
 
 
 
341bd22
f0687e5
852d26e
 
485360d
852d26e
 
 
 
 
2918965
852d26e
341bd22
 
b56c1a4
852d26e
 
 
 
 
 
 
341bd22
f0687e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341bd22
 
e2b2cdb
f0687e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import threading
import gradio as gr
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
)

# Define your models
MODEL_PATHS = {
    "LeCarnet-3M": "MaxLSB/LeCarnet-3M",
    "LeCarnet-8M": "MaxLSB/LeCarnet-8M",
    "LeCarnet-21M": "MaxLSB/LeCarnet-21M",
}

# Add your Hugging Face token
hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
    raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable not set.")

# Load tokenizers & models - only load one initially
tokenizer = None
model = None

def load_model(model_name):
    """Loads the specified model and tokenizer."""
    global tokenizer, model
    if model_name not in MODEL_PATHS:
        raise ValueError(f"Unknown model: {model_name}")

    print(f"Loading {model_name}...")
    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATHS[model_name], token=hf_token)
    model = AutoModelForCausalLM.from_pretrained(MODEL_PATHS[model_name], token=hf_token)
    model.eval()
    print(f"{model_name} loaded.")

# Initial model load
initial_model = list(MODEL_PATHS.keys())[0]
load_model(initial_model)


def respond(
    prompt: str,
    chat_history,
    model_choice: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    global tokenizer, model
    # Reload model if it's not the currently loaded one
    if model.config._name_or_path != MODEL_PATHS[model_choice]:
        load_model(model_choice)

    inputs = tokenizer(prompt, return_tensors="pt")
    streamer = TextIteratorStreamer(
        tokenizer,
        skip_prompt=False,
        skip_special_tokens=True,
    )
    generate_kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=max_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        eos_token_id=tokenizer.eos_token_id,
    )
    thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()
    accumulated = ""
    for new_text in streamer:
        accumulated += new_text
        yield accumulated

# --- Gradio Interface ---
# CSS for the custom logo and layout
css = """
.gradio-container {
  padding: 0 !important;
}
.gradio-container > main.fillable {
  padding: 0 !important;
}
#chatbot {
  height: calc(100vh - 21px - 16px);
  max-height: 1500px;
}
#chatbot .chatbot-conversations {
  height: 100vh;
  background-color: var(--ms-gr-ant-color-bg-layout);
  padding-left: 4px;
  padding-right: 4px;
}
#chatbot .chatbot-conversations .chatbot-conversations-list {
  padding-left: 0;
  padding-right: 0;
}
#chatbot .chatbot-chat {
  padding: 32px;
  padding-bottom: 0;
  height: 100%;
}
@media (max-width: 768px) {
  #chatbot .chatbot-chat {
      padding: 0;
  }
}
#chatbot .chatbot-chat .chatbot-chat-messages {
  flex: 1;
}
.logo-container {
    display: flex;
    justify-content: center;
    padding: 10px;
}
.logo-container img {
    max-width: 80%; /* Adjust as needed */
    height: auto;
}
"""

with gr.Blocks(css=css, fill_width=True) as demo:
    with gr.Column(elem_id="chatbot", variant="panel"):
        # Custom Logo
        with gr.Row(elem_classes="logo-container"):
            gr.Image(
                value="media/le-carnet.png", # Replace with the path to your image file
                label="LeCarnet Logo",
                interactive=False,
                show_label=False,
                show_download_button=False,
                height=100 # Adjust height as needed
            )

        gr.Markdown(
            """
            # LeCarnet AI Assistant
            Type the beginning of a sentence and watch the model finish it.
            """
        )

        with gr.Row():
            with gr.Column(scale=1):
                model_dropdown = gr.Dropdown(
                    choices=list(MODEL_PATHS.keys()),
                    value=initial_model,
                    label="Choose Model",
                    interactive=True
                )
                max_tokens_slider = gr.Slider(
                    1, 512, value=512, step=1, label="Max new tokens"
                )
                temperature_slider = gr.Slider(
                    0.1, 2.0, value=0.7, step=0.1, label="Temperature"
                )
                top_p_slider = gr.Slider(
                    0.1, 1.0, value=0.9, step=0.05, label="Top‑p"
                )

            with gr.Column(scale=3):
                chatbot = gr.ChatInterface(
                    fn=respond,
                    additional_inputs=[
                        model_dropdown, # Pass model choice to respond function
                        max_tokens_slider,
                        temperature_slider,
                        top_p_slider,
                    ],
                    examples=[
                        ["Il était une fois un petit garçon qui vivait dans un village paisible."],
                        ["Il était une fois une grenouille qui rêvait de toucher les étoiles chaque nuit depuis son étang."],
                        ["Il était une fois un petit lapin perdu"],
                    ],
                    cache_examples=False,
                    submit_btn="Generate",
                    clear_btn="Clear Chat",
                )

if __name__ == "__main__":
    demo.queue()
    demo.launch()