File size: 7,326 Bytes
2ad184d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c5199
2ad184d
 
 
46c5199
2ad184d
 
 
aa8e6f0
 
452bd06
 
aa8e6f0
 
46c5199
452bd06
2ad184d
 
 
 
452bd06
3a411d7
2ad184d
 
 
 
 
3a411d7
aa8e6f0
 
 
 
3a411d7
2ad184d
 
 
 
8ef7048
2ad184d
8ef7048
2ad184d
 
 
8ef7048
2ad184d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6beffa
2ad184d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa8e6f0
 
2ad184d
 
 
 
 
 
 
 
 
aa8e6f0
 
 
 
 
 
 
 
 
da06dc3
aa8e6f0
 
 
 
da06dc3
 
 
452bd06
2ad184d
 
 
aa8e6f0
 
da06dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa8e6f0
da06dc3
 
 
 
4fcf54f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import streamlit as st
from bs4 import BeautifulSoup
import io
import fitz
import requests
from langchain.llms import LlamaCpp
from langchain.callbacks.base import BaseCallbackHandler
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import RecursiveCharacterTextSplitter


# StreamHandler to intercept streaming output from the LLM.
# This makes it appear that the Language Model is "typing"
# in realtime.
class StreamHandler(BaseCallbackHandler):
    def __init__(self, container, initial_text=""):
        self.container = container
        self.text = initial_text

    def on_llm_new_token(self, token: str, **kwargs) -> None:
        self.text += token
        self.container.markdown(self.text)


@st.cache_data

def get_page_urls(url):
    page = requests.get(url)
    soup = BeautifulSoup(page.content, 'html.parser')
    links = [link['href'] for link in soup.find_all('a') if 'href' in link.attrs and link['href'].startswith(url) and link['href'] not in [url]]
    links.append(url)
    return set(links)

@st.cache(allow_output_mutation=True)
def process_pdf(file):
    # file is expected to be a BytesIO object directly from the file uploader
    doc = fitz.open("pdf", file.read())  # "pdf" indicates file format is PDF, reading the BytesIO stream
    texts = [page.get_text() for page in doc]
    return '\n'.join(texts)


def get_url_content(url):
    response = requests.get(url)
    if url.endswith('.pdf'):
        pdf = io.BytesIO(response.content)
        doc = fitz.open(stream=pdf, filetype="pdf")
        return (url, ''.join(page.get_text() for page in doc))
    else:
        soup = BeautifulSoup(response.content, 'html.parser')
        content = soup.find_all('div', class_='wpb_content_element')
        text = [c.get_text().strip() for c in content if c.get_text().strip() != '']
        text = [line for item in text for line in item.split('\n') if line.strip() != '']
        # Exclude footer content
        try:
            arts_on_index = text.index('ARTS ON:')
            return (url, '\n'.join(text[:arts_on_index]))
        except ValueError:
            return (url, '\n'.join(text))  # Return full text if specific marker not found

@st.cache_resource
def get_retriever(urls):
    all_content = [get_url_content(url) for url in urls]
    print(all_content)  # See what is actually fetched
    documents = [Document(page_content=doc, metadata={'url': url}) for (url, doc) in all_content]
    print(documents)  # Verify that documents are created correctly

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
    docs = text_splitter.split_documents(documents)
    print(docs)  # Check the final structure of split documents

    embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
    db = DocArrayInMemorySearch.from_documents(docs, embeddings)
    retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10})
    return retriever


@st.cache_resource
def create_chain(_retriever):
    # A stream handler to direct streaming output on the chat screen.
    # This will need to be handled somewhat differently.
    # But it demonstrates what potential it carries.
    # stream_handler = StreamHandler(st.empty())

    # Callback manager is a way to intercept streaming output from the
    # LLM and take some action on it. Here we are giving it our custom
    # stream handler to make it appear as if the LLM is typing the
    # responses in real time.
    # callback_manager = CallbackManager([stream_handler])

    n_gpu_layers = 40  # Change this value based on your model and your GPU VRAM pool.
    n_batch = 2048  # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.

    llm = LlamaCpp(
            model_path="models /mistral-7b-instruct-v0.1.Q5_0.gguf",
            n_gpu_layers=n_gpu_layers,
            n_batch=n_batch,
            n_ctx=2048,
            # max_tokens=2048,
            temperature=0,
            # callback_manager=callback_manager,
            verbose=False,
            streaming=True,
            )

    # Template for the prompt.
    # template = "{question}"

    # We create a prompt from the template so we can use it with langchain
    # prompt = PromptTemplate(template=template, input_variables=["question"])

    # Setup memory for contextual conversation
    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

    # We create a qa chain with our llm, retriever, and memory
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm, retriever=_retriever, memory=memory, verbose=False
    )

    return qa_chain



# Set the webpage title
st.set_page_config(page_title="Your own AI-Chat!")
st.header("Your own AI-Chat!")

# This sets the LLM's personality.
# The initial personality privided is basic.
# Try something interesting and notice how the LLM responses are affected.
# system_prompt = st.text_area(
#    label="System Prompt",
#    value="You are a helpful AI assistant who answers questions in short sentences.",
#    key="system_prompt")
# Choose input method

input_type = st.radio("Choose an input method:", ['URL', 'Upload PDF'])

if input_type == 'URL':
    base_url = st.text_input("Enter the site URL here:", key="base_url")
    if base_url:
        urls = get_page_urls(base_url)
        retriever = get_retriever(urls)
        llm_chain = create_chain(retriever)
elif input_type == 'Upload PDF':
    uploaded_file = st.file_uploader("Upload your PDF here:", type="pdf")
    if uploaded_file:
        pdf_text = process_pdf(uploaded_file)
        # Process the PDF text into a format that can be used by your LLM
        urls = [pdf_text]  # Adapt as needed for your system
        retriever = get_retriever(urls)  # Ensure your retriever can handle raw text; if not, adapt it.
        llm_chain = create_chain(retriever)

    # We store the conversation in the session state.
    # This will be used to render the chat conversation.
    # We initialize it with the first message we want to be greeted with
    
# Initialize chat session state for storing messages and responses
if "messages" not in st.session_state:
    st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}]

if "current_response" not in st.session_state:
    st.session_state.current_response = ""

# Render the chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Input and response handling
if llm_chain and (user_prompt := st.chat_input("Your message here", key="user_input")):
    # Add user input to the session state and chat window
    st.session_state.messages.append({"role": "user", "content": user_prompt})
    with st.chat_message("user"):
        st.markdown(user_prompt)
    
    # Generate and display the response using the LLM chain
    response = llm_chain.run(user_prompt)
    st.session_state.messages.append({"role": "assistant", "content": response})
    with st.chat_message("assistant"):
        st.markdown(response)