Update app.py
Browse files
app.py
CHANGED
@@ -35,7 +35,12 @@ def get_page_urls(url):
|
|
35 |
links.append(url)
|
36 |
return set(links)
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def get_url_content(url):
|
41 |
response = requests.get(url)
|
@@ -48,17 +53,16 @@ def get_url_content(url):
|
|
48 |
return (url, ''.join([text for page in doc for text in page.get_text()]))
|
49 |
else:
|
50 |
soup = BeautifulSoup(response.content, 'html.parser')
|
51 |
-
|
52 |
-
# Content containers. Here wordpress specific container css class name
|
53 |
-
# used. This will be different for each website.
|
54 |
content = soup.find_all('div', class_='wpb_content_element')
|
55 |
text = [c.get_text().strip() for c in content if c.get_text().strip() != '']
|
56 |
text = [line for item in text for line in item.split('\n') if line.strip() != '']
|
57 |
|
58 |
-
# Post processing to exclude footer content.
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
|
63 |
|
64 |
@st.cache_resource
|
@@ -121,12 +125,9 @@ def create_chain(_retriever):
|
|
121 |
return qa_chain
|
122 |
|
123 |
|
124 |
-
# Set the webpage title
|
125 |
-
st.set_page_config(
|
126 |
-
page_title="Your own AI-Chat!"
|
127 |
-
)
|
128 |
|
129 |
-
#
|
|
|
130 |
st.header("Your own AI-Chat!")
|
131 |
|
132 |
# This sets the LLM's personality.
|
@@ -136,20 +137,27 @@ st.header("Your own AI-Chat!")
|
|
136 |
# label="System Prompt",
|
137 |
# value="You are a helpful AI assistant who answers questions in short sentences.",
|
138 |
# key="system_prompt")
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
if
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
# We store the conversation in the session state.
|
151 |
# This will be used to render the chat conversation.
|
152 |
-
# We initialize it with the first message we want to be greeted with
|
|
|
153 |
if "messages" not in st.session_state:
|
154 |
st.session_state.messages = [
|
155 |
{"role": "assistant", "content": "How may I help you today?"}
|
@@ -164,34 +172,36 @@ if st.session_state.base_url != "":
|
|
164 |
with st.chat_message(message["role"]):
|
165 |
st.markdown(message["content"])
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
35 |
links.append(url)
|
36 |
return set(links)
|
37 |
|
38 |
+
@st.cache(allow_output_mutation=True)
|
39 |
+
def process_pdf(file):
|
40 |
+
# Reads PDF from bytes, processes it, and returns extracted text
|
41 |
+
doc = fitz.open(stream=file)
|
42 |
+
texts = [page.get_text() for page in doc]
|
43 |
+
return '\n'.join(texts)
|
44 |
|
45 |
def get_url_content(url):
|
46 |
response = requests.get(url)
|
|
|
53 |
return (url, ''.join([text for page in doc for text in page.get_text()]))
|
54 |
else:
|
55 |
soup = BeautifulSoup(response.content, 'html.parser')
|
|
|
|
|
|
|
56 |
content = soup.find_all('div', class_='wpb_content_element')
|
57 |
text = [c.get_text().strip() for c in content if c.get_text().strip() != '']
|
58 |
text = [line for item in text for line in item.split('\n') if line.strip() != '']
|
59 |
|
60 |
+
# Post processing to exclude footer content, only if 'ARTS ON:' is present.
|
61 |
+
try:
|
62 |
+
arts_on_index = text.index('ARTS ON:')
|
63 |
+
return (url, '\n'.join(text[:arts_on_index]))
|
64 |
+
except ValueError:
|
65 |
+
return (url, '\n'.join(text)) # If 'ARTS ON:' not found, return full text
|
66 |
|
67 |
|
68 |
@st.cache_resource
|
|
|
125 |
return qa_chain
|
126 |
|
127 |
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
# Set the webpage title
|
130 |
+
st.set_page_config(page_title="Your own AI-Chat!")
|
131 |
st.header("Your own AI-Chat!")
|
132 |
|
133 |
# This sets the LLM's personality.
|
|
|
137 |
# label="System Prompt",
|
138 |
# value="You are a helpful AI assistant who answers questions in short sentences.",
|
139 |
# key="system_prompt")
|
140 |
+
# Choose input method
|
141 |
+
|
142 |
+
input_type = st.radio("Choose an input method:", ['URL', 'Upload PDF'])
|
143 |
+
|
144 |
+
if input_type == 'URL':
|
145 |
+
base_url = st.text_input("Enter the site URL here:", key="base_url")
|
146 |
+
if base_url:
|
147 |
+
urls = get_page_urls(base_url)
|
148 |
+
retriever = get_retriever(urls)
|
149 |
+
elif input_type == 'Upload PDF':
|
150 |
+
uploaded_file = st.file_uploader("Upload your PDF here:", type="pdf")
|
151 |
+
if uploaded_file:
|
152 |
+
pdf_text = process_pdf(uploaded_file)
|
153 |
+
# Assume we process the PDF text into a format that can be used by your LLM
|
154 |
+
urls = [pdf_text] # This should be adjusted to match your system's needs
|
155 |
+
retriever = get_retriever(urls)
|
156 |
|
157 |
# We store the conversation in the session state.
|
158 |
# This will be used to render the chat conversation.
|
159 |
+
# We initialize it with the first message we want to be greeted with
|
160 |
+
|
161 |
if "messages" not in st.session_state:
|
162 |
st.session_state.messages = [
|
163 |
{"role": "assistant", "content": "How may I help you today?"}
|
|
|
172 |
with st.chat_message(message["role"]):
|
173 |
st.markdown(message["content"])
|
174 |
|
175 |
+
|
176 |
+
if retriever:
|
177 |
+
# We initialize the quantized LLM from a local path.
|
178 |
+
# Currently most parameters are fixed but we can make them
|
179 |
+
# configurable.
|
180 |
+
llm_chain = create_chain(retriever)
|
181 |
+
|
182 |
+
# We take questions/instructions from the chat input to pass to the LLM
|
183 |
+
if user_prompt := st.chat_input("Your message here", key="user_input"):
|
184 |
+
|
185 |
+
# Add our input to the session state
|
186 |
+
st.session_state.messages.append(
|
187 |
+
{"role": "user", "content": user_prompt}
|
188 |
+
)
|
189 |
+
|
190 |
+
# Add our input to the chat window
|
191 |
+
with st.chat_message("user"):
|
192 |
+
st.markdown(user_prompt)
|
193 |
+
|
194 |
+
# Pass our input to the llm chain and capture the final responses.
|
195 |
+
# It is worth noting that the Stream Handler is already receiving the
|
196 |
+
# streaming response as the llm is generating. We get our response
|
197 |
+
# here once the llm has finished generating the complete response.
|
198 |
+
response = llm_chain.run(user_prompt)
|
199 |
+
|
200 |
+
# Add the response to the session state
|
201 |
+
st.session_state.messages.append(
|
202 |
+
{"role": "assistant", "content": response}
|
203 |
+
)
|
204 |
+
|
205 |
+
# Add the response to the chat window
|
206 |
+
with st.chat_message("assistant"):
|
207 |
+
st.markdown(response)
|