Matthijs Hollemans
segmentation demo
c304fb7
raw
history blame
1.87 kB
import numpy as np
import gradio as gr
from PIL import Image
import torch
from transformers import MobileViTFeatureExtractor, MobileViTForSemanticSegmentation
model_checkpoint = "apple/deeplabv3-mobilevit-small"
feature_extractor = MobileViTFeatureExtractor.from_pretrained(model_checkpoint, do_center_crop=False, size=(512, 512))
model = MobileViTForSemanticSegmentation.from_pretrained(model_checkpoint).eval()
# From https://gist.github.com/kaixin96/457cc3d3be699f1f5b2fd4cdb638d4b4
palette = np.array([
[ 0, 0, 0], [128, 0, 0], [ 0, 128, 0], [128, 128, 0], [ 0, 0, 128],
[128, 0, 128], [ 0, 128, 128], [128, 128, 128], [ 64, 0, 0], [192, 0, 0],
[ 64, 128, 0], [192, 128, 0], [ 64, 0, 128], [192, 0, 128], [ 64, 128, 128],
[192, 128, 128], [ 0, 64, 0], [128, 64, 0], [ 0, 192, 0], [128, 192, 0],
[ 0, 64, 128]], dtype=np.uint8)
def predict(image):
with torch.no_grad():
inputs = feature_extractor(image, return_tensors="pt")
outputs = model(**inputs)
classes = outputs.logits.argmax(1).squeeze().numpy().astype(np.uint8)
# Super slow method but it works
colored = np.zeros((classes.shape[0], classes.shape[1], 3), dtype=np.uint8)
for y in range(classes.shape[0]):
for x in range(classes.shape[1]):
colored[y, x] = palette[classes[y, x]]
# TODO: overlay mask on image?
out_image = Image.fromarray(colored)
out_image = out_image.resize((image.shape[1], image.shape[0]), resample=Image.NEAREST)
return out_image
gr.Interface(
fn=predict,
inputs=gr.inputs.Image(label="Upload image"),
outputs=gr.outputs.Image(),
title="Semantic Segmentation with MobileViT and DeepLabV3",
).launch()
# TODO: combo box with some example images
# TODO: combo box with classes to show on the output, if none then do argmax