File size: 1,873 Bytes
c304fb7
2c1d18b
c304fb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c1d18b
 
8239775
c304fb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c1d18b
8239775
 
c304fb7
 
 
8239775
c304fb7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import gradio as gr
from PIL import Image

import torch
from transformers import MobileViTFeatureExtractor, MobileViTForSemanticSegmentation

model_checkpoint = "apple/deeplabv3-mobilevit-small"
feature_extractor = MobileViTFeatureExtractor.from_pretrained(model_checkpoint, do_center_crop=False, size=(512, 512))
model = MobileViTForSemanticSegmentation.from_pretrained(model_checkpoint).eval()


# From https://gist.github.com/kaixin96/457cc3d3be699f1f5b2fd4cdb638d4b4
palette = np.array([
    [  0,   0,   0], [128,   0,   0], [  0, 128,   0], [128, 128,   0], [  0,   0, 128],
    [128,   0, 128], [  0, 128, 128], [128, 128, 128], [ 64,   0,   0], [192,   0,   0],
    [ 64, 128,   0], [192, 128,   0], [ 64,   0, 128], [192,   0, 128], [ 64, 128, 128],
    [192, 128, 128], [  0,  64,   0], [128,  64,   0], [  0, 192,   0], [128, 192,   0],
    [ 0, 64, 128]], dtype=np.uint8)


def predict(image):
    with torch.no_grad():
        inputs = feature_extractor(image, return_tensors="pt")
        outputs = model(**inputs)

    classes = outputs.logits.argmax(1).squeeze().numpy().astype(np.uint8)

    # Super slow method but it works
    colored = np.zeros((classes.shape[0], classes.shape[1], 3), dtype=np.uint8)
    for y in range(classes.shape[0]):
        for x in range(classes.shape[1]):
            colored[y, x] = palette[classes[y, x]]

    # TODO: overlay mask on image?

    out_image = Image.fromarray(colored)
    out_image = out_image.resize((image.shape[1], image.shape[0]), resample=Image.NEAREST)
    return out_image


gr.Interface(
    fn=predict,
    inputs=gr.inputs.Image(label="Upload image"),
    outputs=gr.outputs.Image(),
    title="Semantic Segmentation with MobileViT and DeepLabV3",
).launch()


# TODO: combo box with some example images
# TODO: combo box with classes to show on the output, if none then do argmax