|
## Overview |
|
|
|
> [!IMPORTANT] |
|
> This example and the RPC backend are currently in a proof-of-concept development stage. As such, the functionality is fragile and |
|
> insecure. **Never run the RPC server on an open network or in a sensitive environment!** |
|
|
|
The `rpc-server` allows running `ggml` backend on a remote host. |
|
The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them. |
|
This can be used for distributed LLM inference with `llama.cpp` in the following way: |
|
|
|
```mermaid |
|
flowchart TD |
|
rpcb<-->|TCP|srva |
|
rpcb<-->|TCP|srvb |
|
rpcb<-.->|TCP|srvn |
|
subgraph hostn[Host N] |
|
srvn[rpc-server]<-.->backend3["Backend (CUDA,Metal,etc.)"] |
|
end |
|
subgraph hostb[Host B] |
|
srvb[rpc-server]<-->backend2["Backend (CUDA,Metal,etc.)"] |
|
end |
|
subgraph hosta[Host A] |
|
srva[rpc-server]<-->backend["Backend (CUDA,Metal,etc.)"] |
|
end |
|
subgraph host[Main Host] |
|
local["Backend (CUDA,Metal,etc.)"]<-->ggml[llama-cli] |
|
ggml[llama-cli]<-->rpcb[RPC backend] |
|
end |
|
style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5 |
|
``` |
|
|
|
Each host can run a different backend, e.g. one with CUDA and another with Metal. |
|
You can also run multiple `rpc-server` instances on the same host, each with a different backend. |
|
|
|
## Usage |
|
|
|
On each host, build the corresponding backend with `cmake` and add `-DGGML_RPC=ON` to the build options. |
|
For example, to build the CUDA backend with RPC support: |
|
|
|
```bash |
|
mkdir build-rpc-cuda |
|
cd build-rpc-cuda |
|
cmake .. -DGGML_CUDA=ON -DGGML_RPC=ON |
|
cmake --build . --config Release |
|
``` |
|
|
|
Then, start the `rpc-server` with the backend: |
|
|
|
```bash |
|
$ bin/rpc-server -p 50052 |
|
create_backend: using CUDA backend |
|
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no |
|
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes |
|
ggml_cuda_init: found 1 CUDA devices: |
|
Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes |
|
Starting RPC server on 0.0.0.0:50052 |
|
``` |
|
|
|
When using the CUDA backend, you can specify the device with the `CUDA_VISIBLE_DEVICES` environment variable, e.g.: |
|
```bash |
|
$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052 |
|
``` |
|
This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device. |
|
|
|
|
|
On the main host build `llama.cpp` for the local backend and add `-DGGML_RPC=ON` to the build options. |
|
Finally, when running `llama-cli`, use the `--rpc` option to specify the host and port of each `rpc-server`: |
|
|
|
```bash |
|
$ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99 |
|
``` |
|
|
|
This way you can offload model layers to both local and remote devices. |
|
|
|
|