File size: 9,543 Bytes
2ac4dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import streamlit as st
import time
import cv2
import numpy as np

# model part

import json
import torch
import torch.nn as nn
import torch.nn.functional as F

from torchvision import datasets, transforms as tr
from torchvision.transforms import v2
from sklearn.preprocessing import minmax_scale
from collections import OrderedDict

st.session_state.image = None
st.session_state.calls = 0

def get_transforms(mean, std):
    
    val_transform = tr.Compose([
        tr.ToPILImage(),
        v2.Resize(size=256),
        tr.ToTensor(),
        #...,
        tr.Normalize(mean=mean, std=std)
    ])
    
    def de_normalize(img):
        if isinstance(img, torch.Tensor):
            image = img.cpu()
        else:
            image = img

        return minmax_scale(
                (image.reshape(3, -1) + mean[:, None]) * std[:, None],
                feature_range=(0., 1.),
                axis=1,
            ).reshape(*img.shape).transpose(1, 2, 0)
    
    return val_transform, de_normalize

class Conv7Stride1(nn.Module):
    def __init__(self, in_channels, out_channels, use_norm=True):
        super(Conv7Stride1, self).__init__()
        if use_norm:
            self.model = nn.Sequential(OrderedDict([
                ('pad', nn.ReflectionPad2d(3)),
                ('conv', torch.nn.Conv2d(in_channels, out_channels, kernel_size=7)),
                ('norm', nn.InstanceNorm2d(out_channels)),
                ('relu', nn.ReLU())
            ]))
        else:
            self.model = nn.Sequential(OrderedDict([
                ('pad', nn.ReflectionPad2d(3)),
                ('conv', torch.nn.Conv2d(in_channels, out_channels, kernel_size=7)),
                ('tanh', nn.Tanh())
            ]))
    def forward(self, x):
        return self.model(x)

class Down(nn.Module):
    def __init__(self, k):
        super(Down, self).__init__()
        self.model = nn.Sequential(OrderedDict([
            ('conv', torch.nn.Conv2d(k//2, k, kernel_size=3, stride=2, padding=1)),
            ('norm', nn.InstanceNorm2d(k)),
            ('relu', nn.ReLU())
        ]))
    def forward(self, x):
        return self.model(x)

class ResBlock(nn.Module):
    def __init__(self, k, use_dropout=False):
        super(ResBlock, self).__init__()
        self.blocks = [] 
        for _ in range(2):
            self.blocks += [nn.Sequential(OrderedDict([
                    ('pad', nn.ReflectionPad2d(1)),
                    ('conv', torch.nn.Conv2d(k, k, kernel_size=3)),
                    ('dropout', nn.BatchNorm2d(k)),
                    ('relu', nn.ReLU())
                ]))]

        if use_dropout:
            self.model = nn.Sequential(OrderedDict([
                ('block1', self.blocks[0]),
                ('dropout', nn.Dropout(0.5)),
                ('block2', self.blocks[1])
            ]))
        else:
            self.model = nn.Sequential(OrderedDict([
                ('block1', self.blocks[0]),
                ('block2', self.blocks[1])
            ]))
        
            
    def forward(self, x):
        return (x + self.model(x))

class Up(nn.Module):
    def __init__(self, k):
        super(Up, self).__init__()
        self.model = nn.Sequential(OrderedDict([
            ('conv_transpose', nn.ConvTranspose2d(2*k, k, kernel_size=3, padding=1, output_padding=1, stride=2)),
            ('norm', nn.InstanceNorm2d(k)),
            ('relu', nn.ReLU())
        ]))
    def forward(self, x):
        return self.model(x)

class ResGenerator(nn.Module):
    def __init__(self, res_blocks=9, use_dropout=False):
        super(ResGenerator, self).__init__()
        self.residual_blocks = nn.Sequential(OrderedDict([
            (f'R256_{i+1}', ResBlock(256, use_dropout=use_dropout)) for i in range(res_blocks)
        ]))
        self.model = nn.Sequential(OrderedDict([
            ('c7s1-64', Conv7Stride1(3, 64)),
            ('d128', Down(128)),
            ('d256', Down(256)),
            ('res_blocks', self.residual_blocks),
            ('u128', Up(128)),
            ('u64', Up(64)),
            ('c7s1-3', Conv7Stride1(64, 3, use_norm=False))
        ]))
    def forward(self, x):
        return self.model(x)

class ConvForDisc(nn.Module):
    def __init__(self, *channels, stride=2, use_norm=True):
        super(ConvForDisc, self).__init__()
        if len(channels) == 1:
            channels = (channels[0] // 2, channels[0])
        if use_norm:
            self.model = nn.Sequential(OrderedDict([
                ('conv', nn.Conv2d(channels[0], channels[1], kernel_size=4, stride=stride, padding=1)),
                ('norm', nn.InstanceNorm2d(channels[1])),
                ('relu', nn.LeakyReLU(0.2, True))
            ]))
        else:
            self.model = nn.Sequential(OrderedDict([
                ('conv', nn.Conv2d(channels[0], channels[1], kernel_size=4, stride=stride, padding=1)),
                ('relu', nn.LeakyReLU(0.2, True))
            ]))
            
    def forward(self, x):
        return self.model(x)

class ConvDiscriminator(nn.Module):
    def __init__(self):
        super(ConvDiscriminator, self).__init__()
        self.model = nn.Sequential(OrderedDict([
            ('C64', ConvForDisc(3, 64, use_norm=False)),
            ('C128', ConvForDisc(128)),
            ('C256', ConvForDisc(256)),
            ('C512', ConvForDisc(512, stride=1)),
            ('conv1channel', nn.Conv2d(512, 1, kernel_size=4, padding=1))
        ]))
        
    def forward(self, x):
        # predicts logits
        return torch.flatten(self.model(x), start_dim=1)

class CycleGAN(nn.Module):
    def __init__(self, res_blocks=9, use_dropout=False):
        super(CycleGAN, self).__init__()
        self.a2b_generator = ResGenerator(res_blocks=9, use_dropout=False)
        self.a_discriminator = ConvDiscriminator()
        self.b2a_generator = ResGenerator(res_blocks=9, use_dropout=False)
        self.b_discriminator = ConvDiscriminator()

@st.cache_resource
def load_model():
    checkpoint = torch.load('cycle_gan#21.pt', weights_only=False,
                            map_location=torch.device('cpu'))
    model = CycleGAN()
    model.load_state_dict(checkpoint['model_state_dict'])
    return model

mean_night = np.array([0.46207718, 0.52259593, 0.54372674])

mean_day = np.array([0.18620284, 0.18614635, 0.20172116])

std_night = np.array([0.21945059, 0.20839803, 0.2328357 ])

std_day = np.array([0.16982935, 0.14963816, 0.14965146])



# front part

st.markdown("<h1 style='text-align: center;'>Change daytime!</h1>", unsafe_allow_html=True)

def add_calls():
    st.session_state.calls += 1
    st.write(f'{st.session_state.calls=}')


def convert_day2night():
    image = st.session_state.image
    col1, col2 = st.columns(2)
    with col1:
        st.write("Left Column")
        st.image(opencv_image, channels="BGR", use_container_width=True)
    with col2:
        st.write("Center Column")

        model = load_model()
        with torch.no_grad():
            channel_mean = (image / 255.).mean()
            transform, de_norm = get_transforms(mean_day, std_day)
            batch = transform(image)[None, :, :, :]
            batch_tr = model.a2b_generator(batch)
            img_tr = de_norm(batch_tr[0, :, :, :])
            st.write(img_tr.shape)
            st.image([image, img_tr], channels="BGR", use_container_width=True, clamp=True)

def convert_night2day():
    image = st.session_state.image
    col1, col2 = st.columns(2)
    with col1:
        st.write("Left Column")
        st.image(opencv_image, channels="BGR", use_container_width=True)
    with col2:
        st.write("Center Column")
        model = load_model()
        with torch.no_grad():
            transform, de_norm = get_transforms(mean_night, std_night)
            batch = transform(image)[None, :, :, :]
            batch_tr = model.b2a_generator(batch)
            img_tr = de_norm(batch_tr[0, :, :, :])
            st.write(img_tr.shape)
            st.image([image, img_tr], channels="BGR", use_container_width=True, clamp=True)

def zero_calls():
    st.session_state.calls = 0

st.session_state.option = st.selectbox('day2night OR night2day', ['day2night', 'night2day'])

uploaded_file = st.file_uploader("Choose a image file", type="jpg")

if uploaded_file is not None:
    # Convert the file to an opencv image.
    file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
    opencv_image = cv2.imdecode(file_bytes, 1)

    st.session_state.image = np.asarray(opencv_image)

    image = st.session_state.image
    col1, col2 = st.columns(2)
    with col1:
        st.write("Original")
        st.image(opencv_image, channels="BGR", use_container_width=True)
    with col2:
        st.write("Transformed")

        model = load_model()
        with torch.no_grad():
            if st.session_state.option == 'day2night':
                channel_mean = (image / 255.).mean()
                transform, de_norm = get_transforms(mean_day, std_day)
                batch = transform(image)[None, :, :, :]
                batch_tr = model.a2b_generator(batch)
                img_tr = de_norm(batch_tr[0, :, :, :])
                st.image(img_tr, channels="BGR", use_container_width=True, clamp=True)
            else:
                transform, de_norm = get_transforms(mean_night, std_night)
                batch = transform(image)[None, :, :, :]
                batch_tr = model.b2a_generator(batch)
                img_tr = de_norm(batch_tr[0, :, :, :])
                st.image(img_tr, channels="BGR", use_container_width=True, clamp=True)