Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# model part
|
7 |
+
|
8 |
+
import json
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from torchvision import datasets, transforms as tr
|
14 |
+
from torchvision.transforms import v2
|
15 |
+
from sklearn.preprocessing import minmax_scale
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
st.session_state.image = None
|
19 |
+
st.session_state.calls = 0
|
20 |
+
|
21 |
+
def get_transforms(mean, std):
|
22 |
+
|
23 |
+
val_transform = tr.Compose([
|
24 |
+
tr.ToPILImage(),
|
25 |
+
v2.Resize(size=256),
|
26 |
+
tr.ToTensor(),
|
27 |
+
#...,
|
28 |
+
tr.Normalize(mean=mean, std=std)
|
29 |
+
])
|
30 |
+
|
31 |
+
def de_normalize(img):
|
32 |
+
if isinstance(img, torch.Tensor):
|
33 |
+
image = img.cpu()
|
34 |
+
else:
|
35 |
+
image = img
|
36 |
+
|
37 |
+
return minmax_scale(
|
38 |
+
(image.reshape(3, -1) + mean[:, None]) * std[:, None],
|
39 |
+
feature_range=(0., 1.),
|
40 |
+
axis=1,
|
41 |
+
).reshape(*img.shape).transpose(1, 2, 0)
|
42 |
+
|
43 |
+
return val_transform, de_normalize
|
44 |
+
|
45 |
+
class Conv7Stride1(nn.Module):
|
46 |
+
def __init__(self, in_channels, out_channels, use_norm=True):
|
47 |
+
super(Conv7Stride1, self).__init__()
|
48 |
+
if use_norm:
|
49 |
+
self.model = nn.Sequential(OrderedDict([
|
50 |
+
('pad', nn.ReflectionPad2d(3)),
|
51 |
+
('conv', torch.nn.Conv2d(in_channels, out_channels, kernel_size=7)),
|
52 |
+
('norm', nn.InstanceNorm2d(out_channels)),
|
53 |
+
('relu', nn.ReLU())
|
54 |
+
]))
|
55 |
+
else:
|
56 |
+
self.model = nn.Sequential(OrderedDict([
|
57 |
+
('pad', nn.ReflectionPad2d(3)),
|
58 |
+
('conv', torch.nn.Conv2d(in_channels, out_channels, kernel_size=7)),
|
59 |
+
('tanh', nn.Tanh())
|
60 |
+
]))
|
61 |
+
def forward(self, x):
|
62 |
+
return self.model(x)
|
63 |
+
|
64 |
+
class Down(nn.Module):
|
65 |
+
def __init__(self, k):
|
66 |
+
super(Down, self).__init__()
|
67 |
+
self.model = nn.Sequential(OrderedDict([
|
68 |
+
('conv', torch.nn.Conv2d(k//2, k, kernel_size=3, stride=2, padding=1)),
|
69 |
+
('norm', nn.InstanceNorm2d(k)),
|
70 |
+
('relu', nn.ReLU())
|
71 |
+
]))
|
72 |
+
def forward(self, x):
|
73 |
+
return self.model(x)
|
74 |
+
|
75 |
+
class ResBlock(nn.Module):
|
76 |
+
def __init__(self, k, use_dropout=False):
|
77 |
+
super(ResBlock, self).__init__()
|
78 |
+
self.blocks = []
|
79 |
+
for _ in range(2):
|
80 |
+
self.blocks += [nn.Sequential(OrderedDict([
|
81 |
+
('pad', nn.ReflectionPad2d(1)),
|
82 |
+
('conv', torch.nn.Conv2d(k, k, kernel_size=3)),
|
83 |
+
('dropout', nn.BatchNorm2d(k)),
|
84 |
+
('relu', nn.ReLU())
|
85 |
+
]))]
|
86 |
+
|
87 |
+
if use_dropout:
|
88 |
+
self.model = nn.Sequential(OrderedDict([
|
89 |
+
('block1', self.blocks[0]),
|
90 |
+
('dropout', nn.Dropout(0.5)),
|
91 |
+
('block2', self.blocks[1])
|
92 |
+
]))
|
93 |
+
else:
|
94 |
+
self.model = nn.Sequential(OrderedDict([
|
95 |
+
('block1', self.blocks[0]),
|
96 |
+
('block2', self.blocks[1])
|
97 |
+
]))
|
98 |
+
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
return (x + self.model(x))
|
102 |
+
|
103 |
+
class Up(nn.Module):
|
104 |
+
def __init__(self, k):
|
105 |
+
super(Up, self).__init__()
|
106 |
+
self.model = nn.Sequential(OrderedDict([
|
107 |
+
('conv_transpose', nn.ConvTranspose2d(2*k, k, kernel_size=3, padding=1, output_padding=1, stride=2)),
|
108 |
+
('norm', nn.InstanceNorm2d(k)),
|
109 |
+
('relu', nn.ReLU())
|
110 |
+
]))
|
111 |
+
def forward(self, x):
|
112 |
+
return self.model(x)
|
113 |
+
|
114 |
+
class ResGenerator(nn.Module):
|
115 |
+
def __init__(self, res_blocks=9, use_dropout=False):
|
116 |
+
super(ResGenerator, self).__init__()
|
117 |
+
self.residual_blocks = nn.Sequential(OrderedDict([
|
118 |
+
(f'R256_{i+1}', ResBlock(256, use_dropout=use_dropout)) for i in range(res_blocks)
|
119 |
+
]))
|
120 |
+
self.model = nn.Sequential(OrderedDict([
|
121 |
+
('c7s1-64', Conv7Stride1(3, 64)),
|
122 |
+
('d128', Down(128)),
|
123 |
+
('d256', Down(256)),
|
124 |
+
('res_blocks', self.residual_blocks),
|
125 |
+
('u128', Up(128)),
|
126 |
+
('u64', Up(64)),
|
127 |
+
('c7s1-3', Conv7Stride1(64, 3, use_norm=False))
|
128 |
+
]))
|
129 |
+
def forward(self, x):
|
130 |
+
return self.model(x)
|
131 |
+
|
132 |
+
class ConvForDisc(nn.Module):
|
133 |
+
def __init__(self, *channels, stride=2, use_norm=True):
|
134 |
+
super(ConvForDisc, self).__init__()
|
135 |
+
if len(channels) == 1:
|
136 |
+
channels = (channels[0] // 2, channels[0])
|
137 |
+
if use_norm:
|
138 |
+
self.model = nn.Sequential(OrderedDict([
|
139 |
+
('conv', nn.Conv2d(channels[0], channels[1], kernel_size=4, stride=stride, padding=1)),
|
140 |
+
('norm', nn.InstanceNorm2d(channels[1])),
|
141 |
+
('relu', nn.LeakyReLU(0.2, True))
|
142 |
+
]))
|
143 |
+
else:
|
144 |
+
self.model = nn.Sequential(OrderedDict([
|
145 |
+
('conv', nn.Conv2d(channels[0], channels[1], kernel_size=4, stride=stride, padding=1)),
|
146 |
+
('relu', nn.LeakyReLU(0.2, True))
|
147 |
+
]))
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
return self.model(x)
|
151 |
+
|
152 |
+
class ConvDiscriminator(nn.Module):
|
153 |
+
def __init__(self):
|
154 |
+
super(ConvDiscriminator, self).__init__()
|
155 |
+
self.model = nn.Sequential(OrderedDict([
|
156 |
+
('C64', ConvForDisc(3, 64, use_norm=False)),
|
157 |
+
('C128', ConvForDisc(128)),
|
158 |
+
('C256', ConvForDisc(256)),
|
159 |
+
('C512', ConvForDisc(512, stride=1)),
|
160 |
+
('conv1channel', nn.Conv2d(512, 1, kernel_size=4, padding=1))
|
161 |
+
]))
|
162 |
+
|
163 |
+
def forward(self, x):
|
164 |
+
# predicts logits
|
165 |
+
return torch.flatten(self.model(x), start_dim=1)
|
166 |
+
|
167 |
+
class CycleGAN(nn.Module):
|
168 |
+
def __init__(self, res_blocks=9, use_dropout=False):
|
169 |
+
super(CycleGAN, self).__init__()
|
170 |
+
self.a2b_generator = ResGenerator(res_blocks=9, use_dropout=False)
|
171 |
+
self.a_discriminator = ConvDiscriminator()
|
172 |
+
self.b2a_generator = ResGenerator(res_blocks=9, use_dropout=False)
|
173 |
+
self.b_discriminator = ConvDiscriminator()
|
174 |
+
|
175 |
+
@st.cache_resource
|
176 |
+
def load_model():
|
177 |
+
checkpoint = torch.load('cycle_gan#21.pt', weights_only=False,
|
178 |
+
map_location=torch.device('cpu'))
|
179 |
+
model = CycleGAN()
|
180 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
181 |
+
return model
|
182 |
+
|
183 |
+
mean_night = np.array([0.46207718, 0.52259593, 0.54372674])
|
184 |
+
|
185 |
+
mean_day = np.array([0.18620284, 0.18614635, 0.20172116])
|
186 |
+
|
187 |
+
std_night = np.array([0.21945059, 0.20839803, 0.2328357 ])
|
188 |
+
|
189 |
+
std_day = np.array([0.16982935, 0.14963816, 0.14965146])
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
# front part
|
194 |
+
|
195 |
+
st.markdown("<h1 style='text-align: center;'>Change daytime!</h1>", unsafe_allow_html=True)
|
196 |
+
|
197 |
+
def add_calls():
|
198 |
+
st.session_state.calls += 1
|
199 |
+
st.write(f'{st.session_state.calls=}')
|
200 |
+
|
201 |
+
|
202 |
+
def convert_day2night():
|
203 |
+
image = st.session_state.image
|
204 |
+
col1, col2 = st.columns(2)
|
205 |
+
with col1:
|
206 |
+
st.write("Left Column")
|
207 |
+
st.image(opencv_image, channels="BGR", use_container_width=True)
|
208 |
+
with col2:
|
209 |
+
st.write("Center Column")
|
210 |
+
|
211 |
+
model = load_model()
|
212 |
+
with torch.no_grad():
|
213 |
+
channel_mean = (image / 255.).mean()
|
214 |
+
transform, de_norm = get_transforms(mean_day, std_day)
|
215 |
+
batch = transform(image)[None, :, :, :]
|
216 |
+
batch_tr = model.a2b_generator(batch)
|
217 |
+
img_tr = de_norm(batch_tr[0, :, :, :])
|
218 |
+
st.write(img_tr.shape)
|
219 |
+
st.image([image, img_tr], channels="BGR", use_container_width=True, clamp=True)
|
220 |
+
|
221 |
+
def convert_night2day():
|
222 |
+
image = st.session_state.image
|
223 |
+
col1, col2 = st.columns(2)
|
224 |
+
with col1:
|
225 |
+
st.write("Left Column")
|
226 |
+
st.image(opencv_image, channels="BGR", use_container_width=True)
|
227 |
+
with col2:
|
228 |
+
st.write("Center Column")
|
229 |
+
model = load_model()
|
230 |
+
with torch.no_grad():
|
231 |
+
transform, de_norm = get_transforms(mean_night, std_night)
|
232 |
+
batch = transform(image)[None, :, :, :]
|
233 |
+
batch_tr = model.b2a_generator(batch)
|
234 |
+
img_tr = de_norm(batch_tr[0, :, :, :])
|
235 |
+
st.write(img_tr.shape)
|
236 |
+
st.image([image, img_tr], channels="BGR", use_container_width=True, clamp=True)
|
237 |
+
|
238 |
+
def zero_calls():
|
239 |
+
st.session_state.calls = 0
|
240 |
+
|
241 |
+
st.session_state.option = st.selectbox('day2night OR night2day', ['day2night', 'night2day'])
|
242 |
+
|
243 |
+
uploaded_file = st.file_uploader("Choose a image file", type="jpg")
|
244 |
+
|
245 |
+
if uploaded_file is not None:
|
246 |
+
# Convert the file to an opencv image.
|
247 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
248 |
+
opencv_image = cv2.imdecode(file_bytes, 1)
|
249 |
+
|
250 |
+
st.session_state.image = np.asarray(opencv_image)
|
251 |
+
|
252 |
+
image = st.session_state.image
|
253 |
+
col1, col2 = st.columns(2)
|
254 |
+
with col1:
|
255 |
+
st.write("Original")
|
256 |
+
st.image(opencv_image, channels="BGR", use_container_width=True)
|
257 |
+
with col2:
|
258 |
+
st.write("Transformed")
|
259 |
+
|
260 |
+
model = load_model()
|
261 |
+
with torch.no_grad():
|
262 |
+
if st.session_state.option == 'day2night':
|
263 |
+
channel_mean = (image / 255.).mean()
|
264 |
+
transform, de_norm = get_transforms(mean_day, std_day)
|
265 |
+
batch = transform(image)[None, :, :, :]
|
266 |
+
batch_tr = model.a2b_generator(batch)
|
267 |
+
img_tr = de_norm(batch_tr[0, :, :, :])
|
268 |
+
st.image(img_tr, channels="BGR", use_container_width=True, clamp=True)
|
269 |
+
else:
|
270 |
+
transform, de_norm = get_transforms(mean_night, std_night)
|
271 |
+
batch = transform(image)[None, :, :, :]
|
272 |
+
batch_tr = model.b2a_generator(batch)
|
273 |
+
img_tr = de_norm(batch_tr[0, :, :, :])
|
274 |
+
st.image(img_tr, channels="BGR", use_container_width=True, clamp=True)
|