|
import streamlit as st |
|
import json |
|
from typing import Dict, List, Any |
|
import re |
|
|
|
def format_project_response(project: dict, include_status: bool = True) -> str: |
|
"""Format a project description with proper status handling""" |
|
response = [f"• {project['name']}:"] |
|
response.append(f" - {project['description']}") |
|
|
|
if 'skills_used' in project: |
|
response.append(f" - Technologies: {', '.join(project['skills_used'])}") |
|
|
|
if include_status and 'status' in project: |
|
if 'development' in project['status'].lower() or 'progress' in project['status'].lower(): |
|
response.append(f" - Currently {project['status']}") |
|
if 'confidentiality_note' in project: |
|
response.append(f" - Note: {project['confidentiality_note']}") |
|
|
|
return '\n'.join(response) |
|
|
|
def analyze_job_requirements(text: str, knowledge_base: dict) -> Dict[str, List[str]]: |
|
"""Analyze job requirements and match with skills""" |
|
text_lower = text.lower() |
|
|
|
|
|
my_skills = { |
|
'technical': [skill.lower() for skill in knowledge_base['skills']['technical_skills']['machine_learning']['core'] + |
|
knowledge_base['skills']['technical_skills']['programming']['primary'] + |
|
knowledge_base['skills']['technical_skills']['data']['databases']], |
|
'tools': [tool.lower() for tool in knowledge_base['skills']['technical_skills']['programming']['tools'] + |
|
knowledge_base['skills']['technical_skills']['deployment']['web']], |
|
'soft_skills': [skill['skill'].lower() for skill in knowledge_base['skills']['soft_skills']] |
|
} |
|
|
|
|
|
matches = { |
|
'technical_matches': [skill for skill in my_skills['technical'] if skill in text_lower], |
|
'tool_matches': [tool for tool in my_skills['tools'] if tool in text_lower], |
|
'soft_skill_matches': [skill for skill in my_skills['soft_skills'] if skill in text_lower] |
|
} |
|
|
|
return matches |
|
|
|
def find_relevant_projects(requirements: str, projects: List[dict]) -> List[dict]: |
|
"""Find projects relevant to job requirements""" |
|
req_lower = requirements.lower() |
|
relevant_projects = [] |
|
|
|
for project in projects: |
|
|
|
if any(skill.lower() in req_lower for skill in project['skills_used']) or \ |
|
any(word in project['description'].lower() for word in req_lower.split()): |
|
relevant_projects.append(project) |
|
|
|
return relevant_projects[:2] |
|
|
|
def add_relevant_links(response: str, query: str, knowledge_base: dict) -> str: |
|
"""Add relevant links based on query context""" |
|
query_lower = query.lower() |
|
links = [] |
|
|
|
|
|
if any(word in query_lower for word in ['project', 'portfolio', 'work']): |
|
links.append(f"\nView my complete portfolio: {knowledge_base['personal_details']['online_presence']['portfolio']}") |
|
|
|
|
|
if any(word in query_lower for word in ['machine learning', 'ml', 'algorithm', 'knn']): |
|
for post in knowledge_base['personal_details']['online_presence']['blog_posts']: |
|
if 'link' in post and any(word in post['title'].lower() for word in query_lower.split()): |
|
links.append(f"\nRelated blog post: {post['link']}") |
|
break |
|
|
|
|
|
if any(word in query_lower for word in ['background', 'experience', 'work']): |
|
links.append(f"\nConnect with me: {knowledge_base['personal_details']['online_presence']['linkedin']}") |
|
|
|
if links: |
|
response += '\n\n' + '\n'.join(links) |
|
|
|
return response |
|
|
|
def generate_response(query: str, knowledge_base: dict) -> str: |
|
"""Generate enhanced responses using the knowledge base""" |
|
query_lower = query.lower() |
|
|
|
|
|
if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']): |
|
response_parts = ["Here are my key projects:"] |
|
|
|
|
|
response_parts.append("\nMajor Projects (In Development):") |
|
for project in knowledge_base['projects']['major_projects']: |
|
response_parts.append(format_project_response(project)) |
|
|
|
|
|
response_parts.append("\nCompleted Algorithm Implementation Projects:") |
|
for project in knowledge_base['projects']['algorithm_practice_projects']: |
|
response_parts.append(format_project_response(project, include_status=False)) |
|
|
|
response = '\n'.join(response_parts) |
|
return add_relevant_links(response, query, knowledge_base) |
|
|
|
|
|
elif len(query.split()) > 20 and any(phrase in query_lower for phrase in |
|
['requirements', 'qualifications', 'looking for', 'job description']): |
|
|
|
skill_matches = analyze_job_requirements(query, knowledge_base) |
|
relevant_projects = find_relevant_projects(query, knowledge_base['projects']['major_projects']) |
|
|
|
response_parts = ["Based on the job requirements, here's how my profile aligns:"] |
|
|
|
|
|
if skill_matches['technical_matches']: |
|
response_parts.append("\n• Technical Skills Match:") |
|
for skill in skill_matches['technical_matches']: |
|
response_parts.append(f" - Strong proficiency in {skill}") |
|
|
|
|
|
if skill_matches['tool_matches']: |
|
response_parts.append("\n• Relevant Tools/Technologies:") |
|
for tool in skill_matches['tool_matches']: |
|
response_parts.append(f" - Experience with {tool}") |
|
|
|
|
|
if relevant_projects: |
|
response_parts.append("\n• Relevant Project Experience:") |
|
for project in relevant_projects: |
|
response_parts.append(format_project_response(project)) |
|
|
|
|
|
response_parts.append("\n• Education and Background:") |
|
response_parts.append(" - Currently pursuing advanced AI/ML education in Canada") |
|
response_parts.append(" - Unique background combining commerce and technology") |
|
response_parts.append(" - Strong foundation in practical ML implementation") |
|
|
|
response = '\n'.join(response_parts) |
|
return add_relevant_links(response, query, knowledge_base) |
|
|
|
|
|
elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']): |
|
transition_story = next((qa['answer'] for qa in knowledge_base['frequently_asked_questions'] |
|
if 'transition' in qa['question'].lower()), '') |
|
|
|
response_parts = [ |
|
"My Journey from Commerce to ML/AI:", |
|
"• Education Background:", |
|
f" - {knowledge_base['education']['undergraduate']['course_name']} from {knowledge_base['education']['undergraduate']['institution']}", |
|
"• Career Transition:", |
|
" - Started as a Programmer Trainee at Cognizant", |
|
f" - {transition_story[:200]}...", |
|
"• Current Path:", |
|
" - Pursuing AI/ML education in Canada", |
|
" - Building practical ML projects", |
|
"• Future Goals:", |
|
" - Aiming to become an ML Engineer in Canada", |
|
" - Focus on innovative AI solutions" |
|
] |
|
|
|
response = '\n'.join(response_parts) |
|
return add_relevant_links(response, query, knowledge_base) |
|
|
|
|
|
elif any(word in query_lower for word in ['skill', 'know', 'technology', 'stack']): |
|
tech_skills = knowledge_base['skills']['technical_skills'] |
|
|
|
response_parts = ["My Technical Expertise:"] |
|
|
|
|
|
response_parts.append("\n• Machine Learning & AI:") |
|
response_parts.append(f" - Core: {', '.join(tech_skills['machine_learning']['core'])}") |
|
response_parts.append(f" - Frameworks: {', '.join(tech_skills['machine_learning']['frameworks'])}") |
|
|
|
|
|
response_parts.append("\n• Programming & Development:") |
|
response_parts.append(f" - Languages: {', '.join(tech_skills['programming']['primary'])}") |
|
response_parts.append(f" - Tools: {', '.join(tech_skills['programming']['tools'])}") |
|
|
|
|
|
response_parts.append("\n• Data & Analytics:") |
|
response_parts.append(f" - Databases: {', '.join(tech_skills['data']['databases'])}") |
|
response_parts.append(f" - Visualization: {', '.join(tech_skills['data']['visualization'])}") |
|
|
|
response = '\n'.join(response_parts) |
|
return add_relevant_links(response, query, knowledge_base) |
|
|
|
|
|
return (f"I'm {knowledge_base['personal_details']['full_name']}, " |
|
f"{knowledge_base['personal_details']['professional_summary']}\n\n" |
|
"You can ask me about:\n" |
|
"• My projects and portfolio\n" |
|
"• My journey from commerce to ML/AI\n" |
|
"• My technical skills and experience\n" |
|
"• My fit for ML/AI roles\n" |
|
"Or paste a job description to see how my profile matches!") |
|
|
|
def main(): |
|
st.title("💬 Chat with Manyue's Portfolio") |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
if "knowledge_base" not in st.session_state: |
|
try: |
|
with open('knowledge_base.json', 'r', encoding='utf-8') as f: |
|
st.session_state.knowledge_base = json.load(f) |
|
except FileNotFoundError: |
|
st.error("Knowledge base file not found.") |
|
return |
|
|
|
|
|
if "displayed_welcome" not in st.session_state: |
|
st.write(""" |
|
Hi! I'm Manyue's AI assistant. I can tell you about: |
|
- My journey from commerce to ML/AI |
|
- My technical skills and projects |
|
- My fit for ML/AI roles |
|
- You can also paste job descriptions to see how my profile matches! |
|
""") |
|
st.session_state.displayed_welcome = True |
|
|
|
|
|
col1, col2 = st.columns([3, 1]) |
|
|
|
with col1: |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
if prompt := st.chat_input("Ask me anything or paste a job description..."): |
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
|
|
with st.chat_message("assistant"): |
|
response = generate_response(prompt, st.session_state.knowledge_base) |
|
st.markdown(response) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|
|
st.rerun() |
|
|
|
with col2: |
|
st.subheader("Quick Questions") |
|
example_questions = [ |
|
"Tell me about your ML projects", |
|
"What are your technical skills?", |
|
"Why should we hire you as an ML Engineer?", |
|
"What's your journey into ML?", |
|
"Paste a job description to see how I match!" |
|
] |
|
|
|
for question in example_questions: |
|
if st.button(question): |
|
st.session_state.messages.append({"role": "user", "content": question}) |
|
st.rerun() |
|
|
|
st.markdown("---") |
|
if st.button("Clear Chat"): |
|
st.session_state.messages = [] |
|
st.rerun() |
|
|
|
if __name__ == "__main__": |
|
main() |