AI-Assistant / app.py
Manyue-DataScientist's picture
Update app.py
72dca05 verified
raw
history blame
10.5 kB
import streamlit as st
import json
from typing import Dict, List, Any
# Initialize Streamlit page configuration
st.set_page_config(
page_title="Manyue's Portfolio Chatbot",
page_icon="🤖",
layout="wide"
)
# Helper functions for formatting responses
def get_project_details(project: dict) -> str:
"""Format project details in a clear, structured way"""
return (
f"• {project['name']}\n"
f" Description: {project['description']}\n"
f" Skills: {', '.join(project['skills_used'])}\n"
f" Status: {project['status']}"
)
def get_skills_by_category(knowledge_base: dict) -> Dict[str, List[str]]:
"""Organize skills by category with examples"""
skills = knowledge_base['skills']
projects = knowledge_base['professional_experience']['projects']
skill_examples = {}
for skill in skills['technical_skills']:
related_projects = [p['name'] for p in projects
if skill.lower() in [s.lower() for s in p['skills_used']]]
if related_projects:
skill_examples[skill] = related_projects[0]
return skill_examples
def format_story_response(knowledge_base: dict) -> str:
"""Format the background story in a clear, structured way"""
education = knowledge_base['education']
story = [
"Here's my journey from commerce to ML/AI:",
"• Education Background:",
f" - Graduated with a Commerce degree from {education['Undergraduate'][0]['institution']}",
"• Career Transition:",
" - Started as a Programmer Trainee at Cognizant despite no prior coding experience",
" - Excelled in development roles and discovered passion for technology",
"• Current Path:",
f" - Pursuing {education['postgraduate'][0]['course_name']} at {education['postgraduate'][0]['institution']}",
f" - Also enrolled in {education['postgraduate'][1]['course_name']} at {education['postgraduate'][1]['institution']}",
"• Goal:",
" - Combining business acumen with ML/AI expertise to create impactful solutions"
]
return '\n'.join(story)
def format_project_list(knowledge_base: dict) -> str:
"""Format project list in a clear, structured way"""
projects = knowledge_base['professional_experience']['projects']
response = ["My Portfolio Projects:"]
for project in projects:
response.extend([
f"\n{project['name']}",
f"• Description: {project['description']}",
f"• Technologies: {', '.join(project['skills_used'])}",
f"• Current Status: {project['status']}",
"---"
])
return '\n'.join(response)
def format_standout_qualities(knowledge_base: dict) -> str:
"""Format standout qualities in a clear, structured way"""
qualities = [
"What Makes Me Stand Out:",
"\n1. Unique Background",
" • Successfully transitioned from commerce to tech",
" • Bring both business acumen and technical expertise",
"\n2. Practical Experience",
f" • Developed {len(knowledge_base['professional_experience']['projects'])} significant ML projects",
" • Real-world implementation experience from Cognizant",
"\n3. Canadian Education",
" • Advanced AI/ML education in Canada",
" • Up-to-date with latest industry practices",
"\n4. Technical Expertise",
f" • Strong foundation in {', '.join(knowledge_base['skills']['technical_skills'][:3])}",
" • Hands-on experience with ML model deployment",
"\n5. Business Perspective",
" • Understanding of both technical and business requirements",
" • Can bridge gap between technical and business teams"
]
return '\n'.join(qualities)
def analyze_job_description(text: str, knowledge_base: dict) -> dict:
"""Analyze job description and match with candidate's profile"""
text_lower = text.lower()
# Extract key skills from knowledge base
my_skills = set(s.lower() for s in knowledge_base['skills']['technical_skills'])
# Common ML/AI job related keywords
ml_keywords = {
'machine learning', 'deep learning', 'artificial intelligence', 'ai', 'ml',
'neural networks', 'nlp', 'computer vision', 'data science',
'python', 'pytorch', 'tensorflow', 'scikit-learn'
}
# Find mentioned skills in JD
found_skills = []
for skill in my_skills:
if skill in text_lower:
found_skills.append(skill)
# Find relevant projects
relevant_projects = []
for project in knowledge_base['professional_experience']['projects']:
project_skills = set(s.lower() for s in project['skills_used'])
if any(skill in text_lower for skill in project_skills):
relevant_projects.append(project)
return {
'matching_skills': found_skills,
'relevant_projects': relevant_projects[:2],
'is_ml_role': any(keyword in text_lower for keyword in ml_keywords)
}
def generate_response(query: str, knowledge_base: dict) -> str:
"""Generate enhanced responses using the knowledge base"""
query_lower = query.lower()
# Handle project listing requests
if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
return format_project_list(knowledge_base)
# Handle background/journey queries
elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
return format_story_response(knowledge_base)
# Handle standout/unique qualities queries
elif any(word in query_lower for word in ['stand out', 'unique', 'different', 'special']):
return format_standout_qualities(knowledge_base)
# Handle job descriptions or role requirements
elif len(query.split()) > 20 or any(phrase in query_lower for phrase in
['requirements', 'qualifications', 'looking for', 'job description', 'responsibilities']):
analysis = analyze_job_description(query, knowledge_base)
if analysis['is_ml_role']:
response_parts = []
response_parts.append("Based on the job description, here's how my profile aligns:")
if analysis['matching_skills']:
response_parts.append(f"\n• Technical Skills Match:\n - I have experience with: {', '.join(analysis['matching_skills'])}")
if analysis['relevant_projects']:
project = analysis['relevant_projects'][0]
response_parts.append(f"\n• Relevant Project Experience:\n - {project['name']}: {project['description']}")
response_parts.append("\n• Additional Qualifications:\n - Advanced AI/ML education in Canada\n - Unique background combining business and technical expertise")
return '\n'.join(response_parts)
# Handle specific skill queries
elif any(word in query_lower for word in ['skill', 'know', 'experience', 'expert']):
skill_examples = get_skills_by_category(knowledge_base)
response = ["My Technical Skills:"]
for skill, project in skill_examples.items():
response.append(f"• {skill} - Applied in {project}")
return '\n'.join(response)
# Default response
return (f"I'm {knowledge_base['personal_details']['full_name']}, "
f"{knowledge_base['personal_details']['professional_summary']}\n\n"
"You can ask me about:\n"
"• My projects and portfolio\n"
"• My journey from commerce to ML/AI\n"
"• My technical skills and experience\n"
"• My fit for ML/AI roles\n"
"Or paste a job description to see how my profile matches!")
# Load and cache knowledge base
@st.cache_data
def load_knowledge_base():
try:
with open('knowledge_base.json', 'r', encoding='utf-8') as f:
return json.load(f)
except FileNotFoundError:
st.error("Knowledge base file not found.")
return {}
def initialize_session_state():
"""Initialize session state variables"""
if "messages" not in st.session_state:
st.session_state.messages = []
if "knowledge_base" not in st.session_state:
st.session_state.knowledge_base = load_knowledge_base()
def main():
st.title("💬 Chat with Manyue's Portfolio")
st.write("""
Hi! I'm Manyue's AI assistant. I can tell you about:
- My journey from commerce to ML/AI
- My technical skills and projects
- My fit for ML/AI roles
- You can also paste job descriptions, and I'll show how my profile matches!
""")
# Initialize session state
initialize_session_state()
# Create two columns
col1, col2 = st.columns([3, 1])
with col1:
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Ask me anything about Manyue's experience or paste a job description..."):
# Add user message
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate and display response
with st.chat_message("assistant"):
response = generate_response(prompt, st.session_state.knowledge_base)
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
with col2:
st.subheader("Quick Questions")
example_questions = [
"Tell me about your ML projects",
"What are your technical skills?",
"Why should we hire you as an ML Engineer?",
"What's your journey into ML?",
"Paste a job description to see how I match!"
]
for question in example_questions:
if st.button(question):
st.session_state.messages.append({"role": "user", "content": question})
st.experimental_rerun()
st.markdown("---")
if st.button("Clear Chat"):
st.session_state.messages = []
st.experimental_rerun()
if __name__ == "__main__":
main()