File size: 10,516 Bytes
352d473 c672d1b 5cb8fb6 352d473 a05bcb9 35e8298 f73c0d1 35e8298 a05bcb9 35e8298 352d473 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 5cb8fb6 efc4ecf 473251f a05bcb9 c672d1b a05bcb9 72dca05 a05bcb9 05ce7a2 a05bcb9 473251f a05bcb9 35e8298 f73c0d1 5cb8fb6 05ce7a2 a05bcb9 05ce7a2 a05bcb9 f73c0d1 05ce7a2 35e8298 5cb8fb6 05ce7a2 f73c0d1 5cb8fb6 f73c0d1 35e8298 a05bcb9 05ce7a2 a05bcb9 35e8298 5cb8fb6 35e8298 5cb8fb6 05ce7a2 35e8298 f73c0d1 a05bcb9 5cb8fb6 a05bcb9 05ce7a2 a05bcb9 05ce7a2 f73c0d1 a05bcb9 f73c0d1 35e8298 352d473 35e8298 5cb8fb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import streamlit as st
import json
from typing import Dict, List, Any
# Initialize Streamlit page configuration
st.set_page_config(
page_title="Manyue's Portfolio Chatbot",
page_icon="🤖",
layout="wide"
)
# Helper functions for formatting responses
def get_project_details(project: dict) -> str:
"""Format project details in a clear, structured way"""
return (
f"• {project['name']}\n"
f" Description: {project['description']}\n"
f" Skills: {', '.join(project['skills_used'])}\n"
f" Status: {project['status']}"
)
def get_skills_by_category(knowledge_base: dict) -> Dict[str, List[str]]:
"""Organize skills by category with examples"""
skills = knowledge_base['skills']
projects = knowledge_base['professional_experience']['projects']
skill_examples = {}
for skill in skills['technical_skills']:
related_projects = [p['name'] for p in projects
if skill.lower() in [s.lower() for s in p['skills_used']]]
if related_projects:
skill_examples[skill] = related_projects[0]
return skill_examples
def format_story_response(knowledge_base: dict) -> str:
"""Format the background story in a clear, structured way"""
education = knowledge_base['education']
story = [
"Here's my journey from commerce to ML/AI:",
"• Education Background:",
f" - Graduated with a Commerce degree from {education['Undergraduate'][0]['institution']}",
"• Career Transition:",
" - Started as a Programmer Trainee at Cognizant despite no prior coding experience",
" - Excelled in development roles and discovered passion for technology",
"• Current Path:",
f" - Pursuing {education['postgraduate'][0]['course_name']} at {education['postgraduate'][0]['institution']}",
f" - Also enrolled in {education['postgraduate'][1]['course_name']} at {education['postgraduate'][1]['institution']}",
"• Goal:",
" - Combining business acumen with ML/AI expertise to create impactful solutions"
]
return '\n'.join(story)
def format_project_list(knowledge_base: dict) -> str:
"""Format project list in a clear, structured way"""
projects = knowledge_base['professional_experience']['projects']
response = ["My Portfolio Projects:"]
for project in projects:
response.extend([
f"\n{project['name']}",
f"• Description: {project['description']}",
f"• Technologies: {', '.join(project['skills_used'])}",
f"• Current Status: {project['status']}",
"---"
])
return '\n'.join(response)
def format_standout_qualities(knowledge_base: dict) -> str:
"""Format standout qualities in a clear, structured way"""
qualities = [
"What Makes Me Stand Out:",
"\n1. Unique Background",
" • Successfully transitioned from commerce to tech",
" • Bring both business acumen and technical expertise",
"\n2. Practical Experience",
f" • Developed {len(knowledge_base['professional_experience']['projects'])} significant ML projects",
" • Real-world implementation experience from Cognizant",
"\n3. Canadian Education",
" • Advanced AI/ML education in Canada",
" • Up-to-date with latest industry practices",
"\n4. Technical Expertise",
f" • Strong foundation in {', '.join(knowledge_base['skills']['technical_skills'][:3])}",
" • Hands-on experience with ML model deployment",
"\n5. Business Perspective",
" • Understanding of both technical and business requirements",
" • Can bridge gap between technical and business teams"
]
return '\n'.join(qualities)
def analyze_job_description(text: str, knowledge_base: dict) -> dict:
"""Analyze job description and match with candidate's profile"""
text_lower = text.lower()
# Extract key skills from knowledge base
my_skills = set(s.lower() for s in knowledge_base['skills']['technical_skills'])
# Common ML/AI job related keywords
ml_keywords = {
'machine learning', 'deep learning', 'artificial intelligence', 'ai', 'ml',
'neural networks', 'nlp', 'computer vision', 'data science',
'python', 'pytorch', 'tensorflow', 'scikit-learn'
}
# Find mentioned skills in JD
found_skills = []
for skill in my_skills:
if skill in text_lower:
found_skills.append(skill)
# Find relevant projects
relevant_projects = []
for project in knowledge_base['professional_experience']['projects']:
project_skills = set(s.lower() for s in project['skills_used'])
if any(skill in text_lower for skill in project_skills):
relevant_projects.append(project)
return {
'matching_skills': found_skills,
'relevant_projects': relevant_projects[:2],
'is_ml_role': any(keyword in text_lower for keyword in ml_keywords)
}
def generate_response(query: str, knowledge_base: dict) -> str:
"""Generate enhanced responses using the knowledge base"""
query_lower = query.lower()
# Handle project listing requests
if any(word in query_lower for word in ['list', 'project', 'portfolio', 'built', 'created', 'developed']):
return format_project_list(knowledge_base)
# Handle background/journey queries
elif any(word in query_lower for word in ['background', 'journey', 'story', 'transition']):
return format_story_response(knowledge_base)
# Handle standout/unique qualities queries
elif any(word in query_lower for word in ['stand out', 'unique', 'different', 'special']):
return format_standout_qualities(knowledge_base)
# Handle job descriptions or role requirements
elif len(query.split()) > 20 or any(phrase in query_lower for phrase in
['requirements', 'qualifications', 'looking for', 'job description', 'responsibilities']):
analysis = analyze_job_description(query, knowledge_base)
if analysis['is_ml_role']:
response_parts = []
response_parts.append("Based on the job description, here's how my profile aligns:")
if analysis['matching_skills']:
response_parts.append(f"\n• Technical Skills Match:\n - I have experience with: {', '.join(analysis['matching_skills'])}")
if analysis['relevant_projects']:
project = analysis['relevant_projects'][0]
response_parts.append(f"\n• Relevant Project Experience:\n - {project['name']}: {project['description']}")
response_parts.append("\n• Additional Qualifications:\n - Advanced AI/ML education in Canada\n - Unique background combining business and technical expertise")
return '\n'.join(response_parts)
# Handle specific skill queries
elif any(word in query_lower for word in ['skill', 'know', 'experience', 'expert']):
skill_examples = get_skills_by_category(knowledge_base)
response = ["My Technical Skills:"]
for skill, project in skill_examples.items():
response.append(f"• {skill} - Applied in {project}")
return '\n'.join(response)
# Default response
return (f"I'm {knowledge_base['personal_details']['full_name']}, "
f"{knowledge_base['personal_details']['professional_summary']}\n\n"
"You can ask me about:\n"
"• My projects and portfolio\n"
"• My journey from commerce to ML/AI\n"
"• My technical skills and experience\n"
"• My fit for ML/AI roles\n"
"Or paste a job description to see how my profile matches!")
# Load and cache knowledge base
@st.cache_data
def load_knowledge_base():
try:
with open('knowledge_base.json', 'r', encoding='utf-8') as f:
return json.load(f)
except FileNotFoundError:
st.error("Knowledge base file not found.")
return {}
def initialize_session_state():
"""Initialize session state variables"""
if "messages" not in st.session_state:
st.session_state.messages = []
if "knowledge_base" not in st.session_state:
st.session_state.knowledge_base = load_knowledge_base()
def main():
st.title("💬 Chat with Manyue's Portfolio")
st.write("""
Hi! I'm Manyue's AI assistant. I can tell you about:
- My journey from commerce to ML/AI
- My technical skills and projects
- My fit for ML/AI roles
- You can also paste job descriptions, and I'll show how my profile matches!
""")
# Initialize session state
initialize_session_state()
# Create two columns
col1, col2 = st.columns([3, 1])
with col1:
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Ask me anything about Manyue's experience or paste a job description..."):
# Add user message
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate and display response
with st.chat_message("assistant"):
response = generate_response(prompt, st.session_state.knowledge_base)
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
with col2:
st.subheader("Quick Questions")
example_questions = [
"Tell me about your ML projects",
"What are your technical skills?",
"Why should we hire you as an ML Engineer?",
"What's your journey into ML?",
"Paste a job description to see how I match!"
]
for question in example_questions:
if st.button(question):
st.session_state.messages.append({"role": "user", "content": question})
st.experimental_rerun()
st.markdown("---")
if st.button("Clear Chat"):
st.session_state.messages = []
st.experimental_rerun()
if __name__ == "__main__":
main() |