File size: 3,819 Bytes
352d473 d5a75cf 352d473 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import streamlit as st
import json
# Page configuration
st.set_page_config(
page_title="Portfolio Chatbot Test",
page_icon="🤖",
layout="wide"
)
# Initialize session state
if 'messages' not in st.session_state:
st.session_state.messages = []
def load_knowledge_base():
"""Load the knowledge base from JSON file"""
try:
with open('knowledge_base.json', 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
st.error(f"Error loading knowledge base: {str(e)}")
return {}
def get_context(query: str, knowledge_base: dict) -> str:
"""Get relevant context from knowledge base based on query"""
query_lower = query.lower()
contexts = []
# Project context
if "project" in query_lower:
if "projects" in knowledge_base:
contexts.extend([
f"{name}: {desc}"
for name, desc in knowledge_base["projects"].items()
])
# Skills context
elif any(keyword in query_lower for keyword in ["skill", "experience", "capability"]):
if "personal_details" in knowledge_base and "skills" in knowledge_base["personal_details"]:
contexts.extend([
f"{skill}: {desc}"
for skill, desc in knowledge_base["personal_details"]["skills"].items()
])
# Default context
else:
contexts = [
f"Name: {knowledge_base.get('personal_details', {}).get('full_name', 'Manyue')}",
"Summary: I am an aspiring AI/ML engineer with experience in Python, Machine Learning, and Data Analysis."
]
return "\n".join(contexts)
def main():
st.title("Portfolio Chatbot Testing Interface")
st.write("Test the chatbot's responses and interaction patterns")
# Load knowledge base
knowledge_base = load_knowledge_base()
# Create two columns for layout
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("Chat Interface")
# Display chat messages from history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What would you like to know?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Get context for the query
context = get_context(prompt, knowledge_base)
# For testing, just echo back the context
response = f"TEST RESPONSE: Here's what I know about this:\n\n{context}"
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
with col2:
st.subheader("Testing Tools")
if st.button("Clear Chat History"):
st.session_state.messages = []
st.experimental_rerun()
st.subheader("Sample Questions")
if st.button("Tell me about your ML projects"):
st.session_state.messages.append({
"role": "user",
"content": "Tell me about your ML projects"
})
st.experimental_rerun()
if st.button("What are your Python skills?"):
st.session_state.messages.append({
"role": "user",
"content": "What are your Python skills?"
})
st.experimental_rerun()
if __name__ == "__main__":
main() |