Manyue-DataScientist commited on
Commit
d5a75cf
·
verified ·
1 Parent(s): c842df8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -22
app.py CHANGED
@@ -1,8 +1,5 @@
1
  import streamlit as st
2
  import json
3
- from transformers import AutoTokenizer, AutoModelForCausalLM
4
- import torch
5
- import time
6
 
7
  # Page configuration
8
  st.set_page_config(
@@ -54,23 +51,6 @@ def get_context(query: str, knowledge_base: dict) -> str:
54
 
55
  return "\n".join(contexts)
56
 
57
- def initialize_model():
58
- """Initialize the model and tokenizer"""
59
- try:
60
- # For testing, use a smaller model
61
- model_name = "meta-llama/Llama-2-7b-chat-hf" # You'll need to adjust this
62
-
63
- tokenizer = AutoTokenizer.from_pretrained(model_name)
64
- model = AutoModelForCausalLM.from_pretrained(
65
- model_name,
66
- torch_dtype=torch.float16,
67
- device_map="auto"
68
- )
69
- return tokenizer, model
70
- except Exception as e:
71
- st.error(f"Error initializing model: {str(e)}")
72
- return None, None
73
-
74
  def main():
75
  st.title("Portfolio Chatbot Testing Interface")
76
  st.write("Test the chatbot's responses and interaction patterns")
@@ -96,8 +76,8 @@ def main():
96
  # Get context for the query
97
  context = get_context(prompt, knowledge_base)
98
 
99
- # For now, just echo back a response (replace with actual model response later)
100
- response = f"Test Response: Let me tell you about that based on my experience..."
101
 
102
  # Display assistant response in chat message container
103
  with st.chat_message("assistant"):
 
1
  import streamlit as st
2
  import json
 
 
 
3
 
4
  # Page configuration
5
  st.set_page_config(
 
51
 
52
  return "\n".join(contexts)
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  def main():
55
  st.title("Portfolio Chatbot Testing Interface")
56
  st.write("Test the chatbot's responses and interaction patterns")
 
76
  # Get context for the query
77
  context = get_context(prompt, knowledge_base)
78
 
79
+ # For testing, just echo back the context
80
+ response = f"TEST RESPONSE: Here's what I know about this:\n\n{context}"
81
 
82
  # Display assistant response in chat message container
83
  with st.chat_message("assistant"):