File size: 6,359 Bytes
352d473 c672d1b 21c5617 35e8298 352d473 a05bcb9 35e8298 f73c0d1 35e8298 a05bcb9 35e8298 352d473 a05bcb9 21c5617 a05bcb9 21c5617 f73c0d1 21c5617 a05bcb9 21c5617 473251f a05bcb9 c672d1b a05bcb9 473251f a05bcb9 35e8298 a05bcb9 35e8298 f73c0d1 a05bcb9 35e8298 a05bcb9 f73c0d1 a05bcb9 f73c0d1 a05bcb9 35e8298 a05bcb9 f73c0d1 21c5617 a05bcb9 21c5617 a05bcb9 21c5617 a05bcb9 21c5617 a05bcb9 21c5617 a05bcb9 951a139 21c5617 951a139 a05bcb9 21c5617 951a139 a05bcb9 21c5617 a05bcb9 c672d1b 35e8298 f73c0d1 a05bcb9 352d473 a05bcb9 35e8298 a05bcb9 f73c0d1 352d473 35e8298 a05bcb9 35e8298 f73c0d1 35e8298 f73c0d1 35e8298 a05bcb9 35e8298 a05bcb9 35e8298 a05bcb9 35e8298 f73c0d1 35e8298 f73c0d1 a05bcb9 951a139 a05bcb9 35e8298 f73c0d1 a05bcb9 f73c0d1 35e8298 352d473 35e8298 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import streamlit as st
import json
import openai
import time
# Initialize Streamlit page configuration
st.set_page_config(
page_title="Manyue's Portfolio Chatbot",
page_icon="🤖",
layout="wide"
)
# Secret management
def get_openai_api_token():
# In production, use Streamlit secrets
return st.secrets["OPENAI_API_KEY"]
# Initialize OpenAI client
@st.cache_resource
def get_openai_client():
openai.api_key = get_openai_api_token()
return openai
# Load and cache knowledge base
@st.cache_data
def load_knowledge_base():
try:
with open('knowledge_base.json', 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
st.error(f"Error loading knowledge base: {str(e)}")
return {}
def get_context(query: str, knowledge_base: dict) -> str:
"""Get relevant context for the query"""
query_lower = query.lower()
contexts = []
# Project-related queries
if any(word in query_lower for word in ["project", "build", "develop", "create"]):
if "projects" in knowledge_base:
for name, details in knowledge_base["projects"].items():
contexts.append(f"Project - {name}: {details.get('description', '')}")
# Skills and expertise
elif any(word in query_lower for word in ["skill", "know", "experience", "expert"]):
if "skills" in knowledge_base.get("personal_details", {}):
contexts.extend([
f"Skill - {skill}: {desc}"
for skill, desc in knowledge_base["personal_details"]["skills"].items()
])
# Role fit and career
elif any(word in query_lower for word in ["role", "fit", "job", "position", "career"]):
contexts.append(knowledge_base.get("professional_journey", {}).get("mindset", ""))
contexts.extend(knowledge_base.get("goals_and_aspirations", {}).get("short_term", []))
# Background and journey
elif any(word in query_lower for word in ["background", "journey", "story"]):
faq = knowledge_base.get("frequently_asked_questions", [])
for qa in faq:
if "background" in qa["question"].lower():
contexts.append(qa["answer"])
# Default context
if not contexts:
contexts = [
f"I am {knowledge_base.get('personal_details', {}).get('full_name', 'Manyue')}",
knowledge_base.get('personal_details', {}).get('professional_summary', '')
]
return "\n".join(contexts)
def generate_openai_prompt(query: str, context: str) -> str:
"""Generate prompt for OpenAI model"""
return f"""You are Manyue's AI assistant. Use this context to answer questions about Manyue:
Context:
{context}
Question: {query}
Instructions:
- Use information from the context
- Speak in first person as Manyue
- Be specific about technical details and achievements
- Keep responses concise but informative
- Focus on relevant experience and skills
- Maintain a professional tone"""
def get_chat_response(query: str, knowledge_base: dict) -> str:
"""Get response from OpenAI API"""
try:
# Get context
context = get_context(query, knowledge_base)
# Generate prompt
prompt = generate_openai_prompt(query, context)
# Get OpenAI client
client = get_openai_client()
# Generate response
response = client.ChatCompletion.create(
model="gpt-4-mini",
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": query}
],
max_tokens=200,
temperature=0.7
)
# Extract and clean response
response_text = response.choices[0].message.content.strip()
return response_text
except Exception as e:
st.error(f"Error generating response: {str(e)}")
return "I apologize, but I encountered an error. Please try asking again."
def initialize_session_state():
"""Initialize session state variables"""
if "messages" not in st.session_state:
st.session_state.messages = []
if "knowledge_base" not in st.session_state:
st.session_state.knowledge_base = load_knowledge_base()
def display_chat_interface():
"""Display main chat interface"""
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def main():
st.title("💬 Chat with Manyue's Portfolio")
st.write("Ask me about my skills, projects, experience, or career goals!")
# Initialize session state
initialize_session_state()
# Create two columns
col1, col2 = st.columns([3, 1])
with col1:
# Display chat interface
display_chat_interface()
# Chat input
if prompt := st.chat_input("What would you like to know?"):
# Add user message
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
# Generate and display response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = get_chat_response(prompt, st.session_state.knowledge_base)
st.markdown(response)
# Add assistant response to history
st.session_state.messages.append({"role": "assistant", "content": response})
with col2:
st.subheader("Quick Questions")
example_questions = [
"Tell me about your ML projects",
"What are your technical skills?",
"Why are you suitable for ML roles?",
"What is your educational background?"
]
for question in example_question:
if st.button(question):
st.session_state.messages.append({"role": "user", "content": question})
st.experimental_rerun()
st.markdown("---")
if st.button("Clear Chat"):
st.session_state.messages = []
st.experimental_rerun()
if __name__ == "__main__":
main() |