File size: 10,336 Bytes
352d473 c672d1b 5cb8fb6 352d473 a05bcb9 35e8298 f73c0d1 35e8298 a05bcb9 35e8298 352d473 5cb8fb6 473251f a05bcb9 c672d1b a05bcb9 5cb8fb6 a05bcb9 05ce7a2 a05bcb9 473251f a05bcb9 35e8298 f73c0d1 5cb8fb6 05ce7a2 a05bcb9 05ce7a2 a05bcb9 f73c0d1 05ce7a2 35e8298 5cb8fb6 05ce7a2 f73c0d1 5cb8fb6 f73c0d1 35e8298 a05bcb9 05ce7a2 a05bcb9 35e8298 5cb8fb6 35e8298 5cb8fb6 05ce7a2 35e8298 f73c0d1 a05bcb9 5cb8fb6 a05bcb9 05ce7a2 a05bcb9 05ce7a2 f73c0d1 a05bcb9 f73c0d1 35e8298 352d473 35e8298 5cb8fb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import streamlit as st
import json
from typing import Dict, List, Any
import re
# Initialize Streamlit page configuration
st.set_page_config(
page_title="Manyue's Portfolio Chatbot",
page_icon="🤖",
layout="wide"
)
def extract_key_requirements(text: str) -> Dict[str, List[str]]:
"""Extract key requirements from text"""
text_lower = text.lower()
categories = {
'technical_skills': [
'python', 'machine learning', 'deep learning', 'nlp', 'neural networks',
'data science', 'sql', 'tensorflow', 'pytorch', 'scikit-learn', 'data analysis'
],
'soft_skills': [
'communication', 'teamwork', 'leadership', 'problem solving', 'analytical',
'collaborative', 'independent', 'innovative'
],
'education': [
'master', 'phd', 'bachelor', 'degree', 'computer science', 'statistics',
'mathematics', 'post graduate', 'certification'
],
'experience': [
'year', 'experience', 'background', 'industry', 'startup', 'enterprise'
]
}
found = {category: [] for category in categories}
for category, keywords in categories.items():
for keyword in keywords:
if keyword in text_lower:
found[category].append(keyword)
return found
def analyze_profile_match(requirements: Dict[str, List[str]], knowledge_base: dict) -> Dict[str, Any]:
"""Analyze how well the profile matches requirements"""
my_skills = set(s.lower() for s in knowledge_base['skills']['technical_skills'])
my_soft_skills = set(s.lower() for s in knowledge_base['skills']['soft_skills'])
# Match technical skills
matching_tech_skills = [skill for skill in requirements['technical_skills']
if any(my_skill in skill or skill in my_skill
for my_skill in my_skills)]
# Match soft skills
matching_soft_skills = [skill for skill in requirements['soft_skills']
if any(my_skill in skill or skill in my_skill
for my_skill in my_soft_skills)]
# Find relevant projects
relevant_projects = []
for project in knowledge_base['professional_experience']['projects']:
project_skills = set(s.lower() for s in project['skills_used'])
if any(skill in ' '.join(requirements['technical_skills']) for skill in project_skills):
relevant_projects.append(project)
# Check education match
education_matches = []
for edu in knowledge_base['education']['postgraduate']:
if any(req in edu['course_name'].lower() for req in requirements['education']):
education_matches.append(edu)
return {
'matching_tech_skills': matching_tech_skills,
'matching_soft_skills': matching_soft_skills,
'relevant_projects': relevant_projects[:2],
'education_matches': education_matches,
'background_story': knowledge_base['frequently_asked_questions'][0]['answer'] # Transition story
}
def generate_response(query: str, knowledge_base: dict) -> str:
"""Generate enhanced responses using the knowledge base"""
query_lower = query.lower()
# Handle job descriptions or role requirements
if len(query.split()) > 20 or any(phrase in query_lower for phrase in
['requirements', 'qualifications', 'looking for', 'job description', 'responsibilities']):
requirements = extract_key_requirements(query)
match_analysis = analyze_profile_match(requirements, knowledge_base)
response_parts = []
# Start with unique background if it's an ML role
if any(skill in query_lower for skill in ['machine learning', 'ml', 'ai', 'data science']):
transition_story = match_analysis['background_story']
response_parts.append(f"With my unique transition from commerce to ML/AI, {transition_story[:200]}...")
# Add technical alignment
if match_analysis['matching_tech_skills']:
response_parts.append(f"I have hands-on experience with key technical requirements including {', '.join(match_analysis['matching_tech_skills'])}.")
# Highlight relevant project
if match_analysis['relevant_projects']:
project = match_analysis['relevant_projects'][0]
response_parts.append(f"My project '{project['name']}' demonstrates my capabilities as {project['description']}")
# Add education and Canadian context
response_parts.append("I'm completing advanced AI/ML education in Canada through Georgian College and George Brown College, gaining cutting-edge knowledge in ML engineering and practical implementation.")
# Add forward-looking statement
response_parts.append("I'm actively expanding my ML expertise through hands-on projects and am ready to contribute to innovative ML solutions in the Canadian tech industry.")
return ' '.join(response_parts)
# Handle specific company/role queries
elif any(word in query_lower for word in ['role', 'fit', 'job', 'position', 'company']):
company_name = None
words = query.split()
for word in words:
if word[0].isupper() and word.lower() not in ['i', 'ml', 'ai', 'nlp']:
company_name = word
break
projects = knowledge_base['professional_experience']['projects']
skills = knowledge_base['skills']['technical_skills']
goals = knowledge_base['goals_and_aspirations']['short_term']
response = [
f"{'As a candidate for ' + company_name if company_name else 'As an ML engineer candidate'}, I bring a unique combination of technical expertise and business understanding from my commerce background.",
f"My strongest project is my {projects[0]['name']}, where {projects[0]['description']}",
f"I've developed expertise in {', '.join(skills[:3])}, applying these skills in real-world projects.",
"With my Canadian AI/ML education and practical project experience, I'm well-prepared to contribute to innovative ML solutions.",
f"I'm actively {goals[0].lower()} and expanding my portfolio with industry-relevant projects."
]
return ' '.join(response)
# Handle specific skill queries
elif any(word in query_lower for word in ['skill', 'know', 'experience', 'expert']):
tech_skills = knowledge_base['skills']['technical_skills']
projects = knowledge_base['professional_experience']['projects']
return f"My core technical stack includes {', '.join(tech_skills[:5])}. I've applied these skills in real-world projects like my {projects[0]['name']}, which {projects[0]['description']}. I'm currently enhancing my ML expertise through advanced studies in Canada and practical project implementation."
# Handle background/journey queries
elif any(word in query_lower for word in ['background', 'journey', 'story']):
transition = next((qa['answer'] for qa in knowledge_base['frequently_asked_questions']
if 'transition' in qa['question'].lower()), '')
return f"{transition[:300]}... This unique journey gives me both technical expertise and business understanding, valuable for ML engineering roles."
# Default response
return f"I'm {knowledge_base['personal_details']['full_name']}, a Machine Learning Engineer candidate with a unique background in commerce and technology. {knowledge_base['personal_details']['professional_summary']}"
# Load and cache knowledge base
@st.cache_data
def load_knowledge_base():
try:
with open('manny_knowledge_base.json', 'r', encoding='utf-8') as f:
return json.load(f)
except FileNotFoundError:
st.error("Knowledge base file not found.")
return {}
def initialize_session_state():
"""Initialize session state variables"""
if "messages" not in st.session_state:
st.session_state.messages = []
if "knowledge_base" not in st.session_state:
st.session_state.knowledge_base = load_knowledge_base()
def main():
st.title("💬 Chat with Manyue's Portfolio")
st.write("""
Hi! I'm Manyue's AI assistant. I can tell you about:
- My journey from commerce to ML/AI
- My technical skills and projects
- My fit for ML/AI roles
- You can also paste job descriptions, and I'll show how my profile matches!
""")
# Initialize session state
initialize_session_state()
# Create two columns
col1, col2 = st.columns([3, 1])
with col1:
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Ask me anything about Manyue's experience or paste a job description..."):
# Add user message
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate and display response
with st.chat_message("assistant"):
response = generate_response(prompt, st.session_state.knowledge_base)
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
with col2:
st.subheader("Quick Questions")
example_questions = [
"Tell me about your ML projects",
"What are your technical skills?",
"Why should we hire you as an ML Engineer?",
"What's your journey into ML?",
"Paste a job description to see how I match!"
]
for question in example_questions:
if st.button(question):
st.session_state.messages.append({"role": "user", "content": question})
st.experimental_rerun()
st.markdown("---")
if st.button("Clear Chat"):
st.session_state.messages = []
st.experimental_rerun()
if __name__ == "__main__":
main() |