|
import torch |
|
import os |
|
import requests |
|
import logging |
|
import gc |
|
from pathlib import Path |
|
|
|
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer |
|
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler |
|
import gradio as gr |
|
from typing import List, Tuple, Optional, Dict, Any |
|
from dataclasses import dataclass |
|
|
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
def download_model(model_url: str, model_path: str): |
|
"""Download large model file with progress tracking.""" |
|
if not os.path.exists(model_path): |
|
try: |
|
logger.info(f"Downloading model from {model_url}...") |
|
response = requests.get(model_url, stream=True) |
|
response.raise_for_status() |
|
|
|
total_size = int(response.headers.get('content-length', 0)) |
|
block_size = 1024 * 1024 |
|
downloaded_size = 0 |
|
|
|
with open(model_path, 'wb') as f: |
|
for data in response.iter_content(block_size): |
|
f.write(data) |
|
downloaded_size += len(data) |
|
progress = (downloaded_size / total_size) * 100 if total_size > 0 else 0 |
|
logger.info(f"Download progress: {progress:.2f}%") |
|
|
|
logger.info("Model download complete.") |
|
except Exception as e: |
|
logger.error(f"Model download failed: {e}") |
|
raise |
|
|
|
@dataclass |
|
class GenerationConfig: |
|
num_images: int = 1 |
|
num_inference_steps: int = 50 |
|
guidance_scale: float = 7.5 |
|
seed: Optional[int] = None |
|
|
|
class ModelCache: |
|
def __init__(self, cache_dir: Path): |
|
self.cache_dir = cache_dir |
|
self.cache_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
def load_model(self, model_id: str, load_func: callable, cache_name: str) -> Any: |
|
try: |
|
logger.info(f"Loading {cache_name}") |
|
return load_func(model_id) |
|
except Exception as e: |
|
logger.error(f"Error loading model {cache_name}: {str(e)}") |
|
raise |
|
|
|
class EnhancedBanglaSDGenerator: |
|
def __init__( |
|
self, |
|
banglaclip_weights_path: str, |
|
cache_dir: str, |
|
device: Optional[torch.device] = None |
|
): |
|
|
|
download_model( |
|
"https://huggingface.co/Mansuba/BanglaCLIP13/resolve/main/banglaclip_model_epoch_10.pth", |
|
banglaclip_weights_path |
|
) |
|
|
|
self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
logger.info(f"Using device: {self.device}") |
|
|
|
self.cache = ModelCache(Path(cache_dir)) |
|
self._initialize_models(banglaclip_weights_path) |
|
self._load_context_data() |
|
|
|
def _initialize_models(self, banglaclip_weights_path: str): |
|
try: |
|
|
|
self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en" |
|
self.translator = self.cache.load_model( |
|
self.bn2en_model_name, |
|
MarianMTModel.from_pretrained, |
|
"translator" |
|
).to(self.device) |
|
self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name) |
|
|
|
|
|
self.clip_model_name = "openai/clip-vit-base-patch32" |
|
self.bangla_text_model = "csebuetnlp/banglabert" |
|
self.banglaclip_model = self._load_banglaclip_model(banglaclip_weights_path) |
|
self.processor = CLIPProcessor.from_pretrained(self.clip_model_name) |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model) |
|
|
|
|
|
self._initialize_stable_diffusion() |
|
|
|
except Exception as e: |
|
logger.error(f"Error initializing models: {str(e)}") |
|
raise RuntimeError(f"Failed to initialize models: {str(e)}") |
|
|
|
|
|
|
|
def create_gradio_interface(): |
|
"""Create and configure the Gradio interface.""" |
|
cache_dir = Path("model_cache") |
|
generator = None |
|
|
|
def initialize_generator(): |
|
nonlocal generator |
|
if generator is None: |
|
generator = EnhancedBanglaSDGenerator( |
|
banglaclip_weights_path="banglaclip_model_epoch_10.pth", |
|
cache_dir=str(cache_dir) |
|
) |
|
return generator |
|
|
|
def cleanup_generator(): |
|
nonlocal generator |
|
if generator is not None: |
|
generator.cleanup() |
|
generator = None |
|
|
|
def generate_images(text: str, num_images: int, steps: int, guidance_scale: float, seed: Optional[int]) -> Tuple[List[Any], str]: |
|
if not text.strip(): |
|
return None, "দয়া করে কিছু টেক্সট লিখুন" |
|
|
|
try: |
|
gen = initialize_generator() |
|
config = GenerationConfig( |
|
num_images=int(num_images), |
|
num_inference_steps=int(steps), |
|
guidance_scale=float(guidance_scale), |
|
seed=int(seed) if seed else None |
|
) |
|
|
|
images, prompt = gen.generate_image(text, config) |
|
cleanup_generator() |
|
return images, prompt |
|
|
|
except Exception as e: |
|
logger.error(f"Error in Gradio interface: {str(e)}") |
|
cleanup_generator() |
|
return None, f"ছবি তৈরি ব্যর্থ হয়েছে: {str(e)}" |
|
|
|
|
|
demo = gr.Interface( |
|
fn=generate_images, |
|
inputs=[ |
|
gr.Textbox( |
|
label="বাংলা টেক্সট লিখুন", |
|
placeholder="যেকোনো বাংলা টেক্সট লিখুন...", |
|
lines=3 |
|
), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=4, |
|
step=1, |
|
value=1, |
|
label="ছবির সংখ্যা" |
|
), |
|
gr.Slider( |
|
minimum=20, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
label="স্টেপস" |
|
), |
|
gr.Slider( |
|
minimum=1.0, |
|
maximum=20.0, |
|
step=0.5, |
|
value=7.5, |
|
label="গাইডেন্স স্কেল" |
|
), |
|
gr.Number( |
|
label="সীড (ঐচ্ছিক)", |
|
precision=0 |
|
) |
|
], |
|
outputs=[ |
|
gr.Gallery(label="তৈরি করা ছবি"), |
|
gr.Textbox(label="ব্যবহৃত প্রম্পট") |
|
], |
|
title="বাংলা টেক্সট থেকে ছবি তৈরি", |
|
description="যেকোনো বাংলা টেক্সট দিয়ে উচ্চমানের ছবি তৈরি করুন" |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_gradio_interface() |
|
|
|
demo.queue().launch(share=True, debug=True) |