import torch import os import requests import logging import gc from pathlib import Path from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import gradio as gr from typing import List, Tuple, Optional, Dict, Any from dataclasses import dataclass # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) def download_model(model_url: str, model_path: str): """Download large model file with progress tracking.""" if not os.path.exists(model_path): try: logger.info(f"Downloading model from {model_url}...") response = requests.get(model_url, stream=True) response.raise_for_status() total_size = int(response.headers.get('content-length', 0)) block_size = 1024 * 1024 # 1 MB chunks downloaded_size = 0 with open(model_path, 'wb') as f: for data in response.iter_content(block_size): f.write(data) downloaded_size += len(data) progress = (downloaded_size / total_size) * 100 if total_size > 0 else 0 logger.info(f"Download progress: {progress:.2f}%") logger.info("Model download complete.") except Exception as e: logger.error(f"Model download failed: {e}") raise @dataclass class GenerationConfig: num_images: int = 1 num_inference_steps: int = 50 guidance_scale: float = 7.5 seed: Optional[int] = None class ModelCache: def __init__(self, cache_dir: Path): self.cache_dir = cache_dir self.cache_dir.mkdir(parents=True, exist_ok=True) def load_model(self, model_id: str, load_func: callable, cache_name: str) -> Any: try: logger.info(f"Loading {cache_name}") return load_func(model_id) except Exception as e: logger.error(f"Error loading model {cache_name}: {str(e)}") raise class EnhancedBanglaSDGenerator: def __init__( self, banglaclip_weights_path: str, cache_dir: str, device: Optional[torch.device] = None ): # Download model if not exists download_model( "https://huggingface.co/Mansuba/BanglaCLIP13/resolve/main/banglaclip_model_epoch_10.pth", banglaclip_weights_path ) self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info(f"Using device: {self.device}") self.cache = ModelCache(Path(cache_dir)) self._initialize_models(banglaclip_weights_path) self._load_context_data() def _initialize_models(self, banglaclip_weights_path: str): try: # Translation models self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en" self.translator = self.cache.load_model( self.bn2en_model_name, MarianMTModel.from_pretrained, "translator" ).to(self.device) self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name) # CLIP models self.clip_model_name = "openai/clip-vit-base-patch32" self.bangla_text_model = "csebuetnlp/banglabert" self.banglaclip_model = self._load_banglaclip_model(banglaclip_weights_path) self.processor = CLIPProcessor.from_pretrained(self.clip_model_name) self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model) # Stable Diffusion self._initialize_stable_diffusion() except Exception as e: logger.error(f"Error initializing models: {str(e)}") raise RuntimeError(f"Failed to initialize models: {str(e)}") # ... [Rest of the previous implementation remains the same] ... def create_gradio_interface(): """Create and configure the Gradio interface.""" cache_dir = Path("model_cache") generator = None def initialize_generator(): nonlocal generator if generator is None: generator = EnhancedBanglaSDGenerator( banglaclip_weights_path="banglaclip_model_epoch_10.pth", cache_dir=str(cache_dir) ) return generator def cleanup_generator(): nonlocal generator if generator is not None: generator.cleanup() generator = None def generate_images(text: str, num_images: int, steps: int, guidance_scale: float, seed: Optional[int]) -> Tuple[List[Any], str]: if not text.strip(): return None, "দয়া করে কিছু টেক্সট লিখুন" try: gen = initialize_generator() config = GenerationConfig( num_images=int(num_images), num_inference_steps=int(steps), guidance_scale=float(guidance_scale), seed=int(seed) if seed else None ) images, prompt = gen.generate_image(text, config) cleanup_generator() return images, prompt except Exception as e: logger.error(f"Error in Gradio interface: {str(e)}") cleanup_generator() return None, f"ছবি তৈরি ব্যর্থ হয়েছে: {str(e)}" # Gradio interface configuration demo = gr.Interface( fn=generate_images, inputs=[ gr.Textbox( label="বাংলা টেক্সট লিখুন", placeholder="যেকোনো বাংলা টেক্সট লিখুন...", lines=3 ), gr.Slider( minimum=1, maximum=4, step=1, value=1, label="ছবির সংখ্যা" ), gr.Slider( minimum=20, maximum=100, step=1, value=50, label="স্টেপস" ), gr.Slider( minimum=1.0, maximum=20.0, step=0.5, value=7.5, label="গাইডেন্স স্কেল" ), gr.Number( label="সীড (ঐচ্ছিক)", precision=0 ) ], outputs=[ gr.Gallery(label="তৈরি করা ছবি"), gr.Textbox(label="ব্যবহৃত প্রম্পট") ], title="বাংলা টেক্সট থেকে ছবি তৈরি", description="যেকোনো বাংলা টেক্সট দিয়ে উচ্চমানের ছবি তৈরি করুন" ) return demo if __name__ == "__main__": demo = create_gradio_interface() # Fixed queue configuration for newer Gradio versions demo.queue().launch(share=True, debug=True)