Spaces:
Running
on
Zero
Running
on
Zero
Update analyzer.py
Browse files- analyzer.py +38 -303
analyzer.py
CHANGED
@@ -1,317 +1,52 @@
|
|
1 |
"""
|
2 |
-
Ultra Supreme
|
3 |
-
|
4 |
"""
|
5 |
|
6 |
-
|
7 |
-
import
|
8 |
-
import gc
|
9 |
-
import logging
|
10 |
-
from datetime import datetime
|
11 |
-
from typing import Tuple, Dict, Any, Optional
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
from PIL import Image
|
16 |
-
from clip_interrogator import Config, Interrogator
|
17 |
-
|
18 |
-
from analyzer import UltraSupremeAnalyzer
|
19 |
-
|
20 |
-
logger = logging.getLogger(__name__)
|
21 |
-
|
22 |
-
|
23 |
-
class UltraSupremeOptimizer:
|
24 |
-
"""Main optimizer class for ultra supreme image analysis"""
|
25 |
|
26 |
def __init__(self):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
if torch.cuda.is_available():
|
37 |
-
return "cuda"
|
38 |
-
elif torch.backends.mps.is_available():
|
39 |
-
return "mps"
|
40 |
-
else:
|
41 |
-
return "cpu"
|
42 |
-
|
43 |
-
def initialize_model(self) -> bool:
|
44 |
-
"""Initialize the CLIP interrogator model"""
|
45 |
-
if self.is_initialized:
|
46 |
-
return True
|
47 |
-
|
48 |
-
try:
|
49 |
-
config = Config(
|
50 |
-
clip_model_name="ViT-L-14/openai",
|
51 |
-
download_cache=True,
|
52 |
-
chunk_size=2048,
|
53 |
-
quiet=True,
|
54 |
-
device=self.device
|
55 |
-
)
|
56 |
-
|
57 |
-
self.interrogator = Interrogator(config)
|
58 |
-
self.is_initialized = True
|
59 |
-
|
60 |
-
# Clean up memory after initialization
|
61 |
-
if self.device == "cpu":
|
62 |
-
gc.collect()
|
63 |
-
else:
|
64 |
-
torch.cuda.empty_cache()
|
65 |
-
|
66 |
-
return True
|
67 |
-
|
68 |
-
except Exception as e:
|
69 |
-
logger.error(f"Initialization error: {e}")
|
70 |
-
return False
|
71 |
-
|
72 |
-
def optimize_image(self, image: Any) -> Optional[Image.Image]:
|
73 |
-
"""Optimize image for processing"""
|
74 |
-
if image is None:
|
75 |
-
return None
|
76 |
-
|
77 |
-
try:
|
78 |
-
# Convert to PIL Image if necessary
|
79 |
-
if isinstance(image, np.ndarray):
|
80 |
-
image = Image.fromarray(image)
|
81 |
-
elif not isinstance(image, Image.Image):
|
82 |
-
image = Image.open(image)
|
83 |
-
|
84 |
-
# Convert to RGB if necessary
|
85 |
-
if image.mode != 'RGB':
|
86 |
-
image = image.convert('RGB')
|
87 |
-
|
88 |
-
# Resize if too large
|
89 |
-
max_size = 768 if self.device != "cpu" else 512
|
90 |
-
if image.size[0] > max_size or image.size[1] > max_size:
|
91 |
-
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
92 |
-
|
93 |
-
return image
|
94 |
-
|
95 |
-
except Exception as e:
|
96 |
-
logger.error(f"Image optimization error: {e}")
|
97 |
-
return None
|
98 |
-
|
99 |
-
def apply_flux_rules(self, base_prompt: str) -> str:
|
100 |
-
"""Aplica las reglas de Flux a un prompt base de CLIP Interrogator"""
|
101 |
-
|
102 |
-
# Limpiar el prompt de elementos no deseados
|
103 |
-
cleanup_patterns = [
|
104 |
-
r',\s*trending on artstation',
|
105 |
-
r',\s*trending on [^,]+',
|
106 |
-
r',\s*\d+k\s*',
|
107 |
-
r',\s*\d+k resolution',
|
108 |
-
r',\s*artstation',
|
109 |
-
r',\s*concept art',
|
110 |
-
r',\s*digital art',
|
111 |
-
r',\s*by greg rutkowski', # Remover artistas genéricos overused
|
112 |
-
]
|
113 |
-
|
114 |
-
cleaned_prompt = base_prompt
|
115 |
-
for pattern in cleanup_patterns:
|
116 |
-
cleaned_prompt = re.sub(pattern, '', cleaned_prompt, flags=re.IGNORECASE)
|
117 |
-
|
118 |
-
# Detectar el tipo de imagen para añadir configuración de cámara apropiada
|
119 |
-
camera_config = ""
|
120 |
-
if any(word in base_prompt.lower() for word in ['portrait', 'person', 'man', 'woman', 'face']):
|
121 |
-
camera_config = ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography"
|
122 |
-
elif any(word in base_prompt.lower() for word in ['landscape', 'mountain', 'nature', 'outdoor']):
|
123 |
-
camera_config = ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography"
|
124 |
-
elif any(word in base_prompt.lower() for word in ['street', 'urban', 'city']):
|
125 |
-
camera_config = ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography"
|
126 |
-
else:
|
127 |
-
camera_config = ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
|
128 |
-
|
129 |
-
# Añadir mejoras de iluminación si no están presentes
|
130 |
-
if 'lighting' not in cleaned_prompt.lower():
|
131 |
-
if 'dramatic' in cleaned_prompt.lower():
|
132 |
-
cleaned_prompt += ", dramatic cinematic lighting"
|
133 |
-
elif 'portrait' in cleaned_prompt.lower():
|
134 |
-
cleaned_prompt += ", professional studio lighting with subtle rim light"
|
135 |
-
else:
|
136 |
-
cleaned_prompt += ", masterful natural lighting"
|
137 |
-
|
138 |
-
# Construir el prompt final
|
139 |
-
final_prompt = cleaned_prompt + camera_config
|
140 |
-
|
141 |
-
# Asegurar que empiece con mayúscula
|
142 |
-
final_prompt = final_prompt[0].upper() + final_prompt[1:] if final_prompt else final_prompt
|
143 |
-
|
144 |
-
# Limpiar espacios y comas duplicadas
|
145 |
-
final_prompt = re.sub(r'\s+', ' ', final_prompt)
|
146 |
-
final_prompt = re.sub(r',\s*,+', ',', final_prompt)
|
147 |
-
|
148 |
-
return final_prompt
|
149 |
-
|
150 |
-
@spaces.GPU
|
151 |
-
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
152 |
-
"""
|
153 |
-
Generate ultra supreme prompt from image usando el pipeline completo
|
154 |
-
|
155 |
-
Returns:
|
156 |
-
Tuple of (prompt, analysis_info, score, breakdown)
|
157 |
-
"""
|
158 |
-
try:
|
159 |
-
# Initialize model if needed
|
160 |
-
if not self.is_initialized:
|
161 |
-
if not self.initialize_model():
|
162 |
-
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
|
163 |
-
|
164 |
-
# Validate input
|
165 |
-
if image is None:
|
166 |
-
return "❌ Please upload an image.", "No image provided.", 0, {}
|
167 |
-
|
168 |
-
self.usage_count += 1
|
169 |
-
|
170 |
-
# Optimize image
|
171 |
-
image = self.optimize_image(image)
|
172 |
-
if image is None:
|
173 |
-
return "❌ Image processing failed.", "Invalid image format.", 0, {}
|
174 |
-
|
175 |
-
start_time = datetime.now()
|
176 |
-
|
177 |
-
# NUEVO PIPELINE: Usar CLIP Interrogator completo
|
178 |
-
logger.info("ULTRA SUPREME ANALYSIS - Usando pipeline completo de CLIP Interrogator")
|
179 |
-
|
180 |
-
# 1. Obtener el prompt COMPLETO de CLIP Interrogator (no solo análisis)
|
181 |
-
# Este incluye descripción + artistas + estilos + mediums
|
182 |
-
full_prompt = self.interrogator.interrogate(image)
|
183 |
-
logger.info(f"Prompt completo de CLIP Interrogator: {full_prompt}")
|
184 |
-
|
185 |
-
# 2. También obtener los análisis individuales para el reporte
|
186 |
-
clip_fast = self.interrogator.interrogate_fast(image)
|
187 |
-
clip_classic = self.interrogator.interrogate_classic(image)
|
188 |
-
|
189 |
-
logger.info(f"Análisis Fast: {clip_fast}")
|
190 |
-
logger.info(f"Análisis Classic: {clip_classic}")
|
191 |
-
|
192 |
-
# 3. Aplicar reglas de Flux al prompt completo
|
193 |
-
import re
|
194 |
-
optimized_prompt = self.apply_flux_rules(full_prompt)
|
195 |
-
|
196 |
-
# 4. Crear análisis para el reporte (simplificado)
|
197 |
-
analysis_summary = {
|
198 |
-
"base_prompt": full_prompt,
|
199 |
-
"clip_fast": clip_fast,
|
200 |
-
"clip_classic": clip_classic,
|
201 |
-
"optimized": optimized_prompt,
|
202 |
-
"detected_style": self._detect_style(full_prompt),
|
203 |
-
"detected_subject": self._detect_subject(full_prompt)
|
204 |
-
}
|
205 |
-
|
206 |
-
# 5. Calcular score basado en la riqueza del prompt
|
207 |
-
score = self._calculate_score(optimized_prompt, full_prompt)
|
208 |
-
breakdown = {
|
209 |
-
"base_quality": min(len(full_prompt) // 10, 25),
|
210 |
-
"technical_enhancement": 25 if "Shot on" in optimized_prompt else 0,
|
211 |
-
"lighting_quality": 25 if "lighting" in optimized_prompt.lower() else 0,
|
212 |
-
"composition": 25 if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic"]) else 0
|
213 |
-
}
|
214 |
-
score = sum(breakdown.values())
|
215 |
-
|
216 |
-
end_time = datetime.now()
|
217 |
-
duration = (end_time - start_time).total_seconds()
|
218 |
-
|
219 |
-
# Memory cleanup
|
220 |
-
if self.device == "cpu":
|
221 |
-
gc.collect()
|
222 |
-
else:
|
223 |
-
torch.cuda.empty_cache()
|
224 |
-
|
225 |
-
# Generate analysis report
|
226 |
-
analysis_info = self._generate_analysis_report(
|
227 |
-
analysis_summary, score, breakdown, duration
|
228 |
-
)
|
229 |
-
|
230 |
-
return optimized_prompt, analysis_info, score, breakdown
|
231 |
-
|
232 |
-
except Exception as e:
|
233 |
-
logger.error(f"Ultra supreme generation error: {e}")
|
234 |
-
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
|
235 |
-
|
236 |
-
def _detect_style(self, prompt: str) -> str:
|
237 |
-
"""Detecta el estilo principal del prompt"""
|
238 |
-
styles = {
|
239 |
-
"portrait": ["portrait", "person", "face", "headshot"],
|
240 |
-
"landscape": ["landscape", "mountain", "nature", "scenery"],
|
241 |
-
"street": ["street", "urban", "city"],
|
242 |
-
"artistic": ["artistic", "abstract", "conceptual"],
|
243 |
-
"dramatic": ["dramatic", "cinematic", "moody"]
|
244 |
}
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
return "
|
251 |
-
|
252 |
-
def
|
253 |
-
"""
|
254 |
-
# Tomar las primeras palabras significativas
|
255 |
-
words = prompt.split(',')[0].split()
|
256 |
-
if len(words) > 3:
|
257 |
-
return ' '.join(words[:4])
|
258 |
-
return prompt.split(',')[0]
|
259 |
-
|
260 |
-
def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
|
261 |
-
"""Calcula el score basado en la calidad del prompt"""
|
262 |
score = 0
|
|
|
263 |
|
264 |
-
#
|
265 |
-
|
266 |
-
|
267 |
-
# Technical enhancement
|
268 |
-
if "Shot on" in optimized_prompt:
|
269 |
score += 25
|
|
|
270 |
|
271 |
-
|
272 |
-
if "lighting" in optimized_prompt.lower():
|
273 |
score += 25
|
274 |
-
|
275 |
-
|
276 |
-
if
|
277 |
score += 25
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
-
return min(score, 100)
|
280 |
-
|
281 |
-
def _generate_analysis_report(self, analysis: Dict[str, Any],
|
282 |
-
score: int, breakdown: Dict[str, int],
|
283 |
-
duration: float) -> str:
|
284 |
-
"""Generate detailed analysis report"""
|
285 |
-
|
286 |
-
gpu_status = "⚡ ZeroGPU" if torch.cuda.is_available() else "💻 CPU"
|
287 |
-
|
288 |
-
# Extraer información clave
|
289 |
-
detected_style = analysis.get("detected_style", "general").title()
|
290 |
-
detected_subject = analysis.get("detected_subject", "Unknown")
|
291 |
-
base_prompt_preview = analysis.get("base_prompt", "")[:100] + "..." if len(analysis.get("base_prompt", "")) > 100 else analysis.get("base_prompt", "")
|
292 |
-
|
293 |
-
analysis_info = f"""**🚀 ULTRA SUPREME ANALYSIS COMPLETE**
|
294 |
-
**Processing:** {gpu_status} • {duration:.1f}s • Full CLIP Interrogator Pipeline
|
295 |
-
**Ultra Score:** {score}/100 • Breakdown: Base({breakdown.get('base_quality',0)}) Technical({breakdown.get('technical_enhancement',0)}) Lighting({breakdown.get('lighting_quality',0)}) Composition({breakdown.get('composition',0)})
|
296 |
-
**Generation:** #{self.usage_count}
|
297 |
-
|
298 |
-
**🧠 INTELLIGENT DETECTION:**
|
299 |
-
- **Detected Style:** {detected_style}
|
300 |
-
- **Main Subject:** {detected_subject}
|
301 |
-
- **Pipeline:** CLIP Interrogator → Flux Optimization → Technical Enhancement
|
302 |
-
|
303 |
-
**📊 CLIP INTERROGATOR ANALYSIS:**
|
304 |
-
- **Base Prompt:** {base_prompt_preview}
|
305 |
-
- **Fast Analysis:** {analysis.get('clip_fast', '')[:80]}...
|
306 |
-
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
|
307 |
-
|
308 |
-
**⚡ OPTIMIZATION APPLIED:**
|
309 |
-
- ✅ Preserved CLIP Interrogator's rich description
|
310 |
-
- ✅ Added professional camera specifications
|
311 |
-
- ✅ Enhanced lighting descriptions
|
312 |
-
- ✅ Applied Flux-specific optimizations
|
313 |
-
- ✅ Removed redundant/generic elements
|
314 |
-
|
315 |
-
**🔬 Powered by Pariente AI Research + CLIP Interrogator**"""
|
316 |
-
|
317 |
-
return analysis_info
|
|
|
1 |
"""
|
2 |
+
Ultra Supreme Analyzer - VERSIÓN SIMPLIFICADA
|
3 |
+
Solo formatea, no limita
|
4 |
"""
|
5 |
|
6 |
+
import re
|
7 |
+
from typing import Dict, List, Any, Tuple
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
class UltraSupremeAnalyzer:
|
10 |
+
"""Analyzer simplificado que NO limita CLIP"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def __init__(self):
|
13 |
+
pass
|
14 |
+
|
15 |
+
def ultra_supreme_analysis(self, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]:
|
16 |
+
"""Análisis mínimo - solo devuelve los datos raw"""
|
17 |
+
return {
|
18 |
+
"clip_fast": clip_fast,
|
19 |
+
"clip_classic": clip_classic,
|
20 |
+
"clip_best": clip_best,
|
21 |
+
"full_description": f"{clip_fast} {clip_classic} {clip_best}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
}
|
23 |
+
|
24 |
+
def build_ultra_supreme_prompt(self, ultra_analysis: Dict[str, Any], clip_results: List[str]) -> str:
|
25 |
+
"""NO construye nada - este método ya no se usa con el nuevo pipeline"""
|
26 |
+
# Este método existe solo por compatibilidad
|
27 |
+
# El verdadero trabajo se hace en optimizer.py con apply_flux_rules()
|
28 |
+
return clip_results[0] if clip_results else ""
|
29 |
+
|
30 |
+
def calculate_ultra_supreme_score(self, prompt: str, ultra_analysis: Dict[str, Any]) -> Tuple[int, Dict[str, int]]:
|
31 |
+
"""Calcula score basado en la longitud y riqueza del prompt"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
score = 0
|
33 |
+
breakdown = {}
|
34 |
|
35 |
+
# Simple scoring basado en características del prompt final
|
36 |
+
if len(prompt) > 50:
|
|
|
|
|
|
|
37 |
score += 25
|
38 |
+
breakdown["length"] = 25
|
39 |
|
40 |
+
if "Shot on" in prompt:
|
|
|
41 |
score += 25
|
42 |
+
breakdown["camera"] = 25
|
43 |
+
|
44 |
+
if "lighting" in prompt.lower():
|
45 |
score += 25
|
46 |
+
breakdown["lighting"] = 25
|
47 |
+
|
48 |
+
if any(word in prompt.lower() for word in ["photography", "cinematic", "professional"]):
|
49 |
+
score += 25
|
50 |
+
breakdown["style"] = 25
|
51 |
|
52 |
+
return min(score, 100), breakdown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|