Spaces:
Running
on
Zero
Running
on
Zero
Update analyzer.py
Browse files- analyzer.py +288 -344
analyzer.py
CHANGED
@@ -1,373 +1,317 @@
|
|
1 |
"""
|
2 |
-
Ultra Supreme
|
3 |
-
VERSIÓN MEJORADA -
|
4 |
"""
|
5 |
|
6 |
-
|
7 |
-
|
|
|
8 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
|
13 |
-
class
|
14 |
-
"""
|
15 |
-
ULTRA SUPREME ANALYSIS ENGINE - POTENCIA CLIP, NO LO LIMITA
|
16 |
-
"""
|
17 |
|
18 |
def __init__(self):
|
19 |
-
|
20 |
-
self.
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
r'an image of\s*',
|
25 |
-
r'a picture of\s*',
|
26 |
-
r'inspired by [^,]+,?\s*',
|
27 |
-
r'by [A-Z][^,]+,?\s*',
|
28 |
-
r'trending on [^,]+,?\s*',
|
29 |
-
r'featured on [^,]+,?\s*',
|
30 |
-
r'\d+k\s*',
|
31 |
-
r'::\s*::\s*',
|
32 |
-
r'contest winner,?\s*',
|
33 |
-
r'award winning,?\s*',
|
34 |
-
]
|
35 |
-
|
36 |
-
# Indicadores de calidad técnica
|
37 |
-
self.technical_indicators = {
|
38 |
-
'portrait': ['portrait', 'headshot', 'face', 'person', 'man', 'woman', 'child'],
|
39 |
-
'landscape': ['mountain', 'landscape', 'nature', 'outdoor', 'field', 'forest'],
|
40 |
-
'dramatic': ['dramatic', 'light shining', 'silhouette', 'backlit', 'atmospheric'],
|
41 |
-
'professional': ['professional', 'studio', 'formal', 'business'],
|
42 |
-
'artistic': ['artistic', 'creative', 'abstract', 'conceptual'],
|
43 |
-
'documentary': ['documentary', 'candid', 'street', 'journalism', 'authentic']
|
44 |
-
}
|
45 |
-
|
46 |
-
# Mejoras de iluminación basadas en contexto
|
47 |
-
self.lighting_enhancements = {
|
48 |
-
'outdoor': 'natural lighting with golden hour warmth',
|
49 |
-
'mountain': 'dramatic alpine lighting with atmospheric haze',
|
50 |
-
'portrait': 'professional portrait lighting with subtle rim light',
|
51 |
-
'silhouette': 'dramatic backlighting creating ethereal silhouettes',
|
52 |
-
'indoor': 'soft diffused window lighting with gentle shadows',
|
53 |
-
'night': 'cinematic low-key lighting with strategic highlights',
|
54 |
-
'default': 'masterful lighting that enhances depth and dimension'
|
55 |
-
}
|
56 |
-
|
57 |
-
# Configuraciones de cámara según el tipo de foto
|
58 |
-
self.camera_configs = {
|
59 |
-
'portrait': 'Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8',
|
60 |
-
'landscape': 'Shot on Phase One XT, 40mm f/4 lens at f/8',
|
61 |
-
'dramatic': 'Shot on Canon R5, 85mm f/1.2 lens at f/2',
|
62 |
-
'street': 'Shot on Leica M11, 35mm f/1.4 lens at f/2.8',
|
63 |
-
'default': 'Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4'
|
64 |
-
}
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
# Limpiar espacios múltiples y comas redundantes
|
75 |
-
cleaned = re.sub(r'\s+', ' ', cleaned)
|
76 |
-
cleaned = re.sub(r',\s*,+', ',', cleaned)
|
77 |
-
cleaned = re.sub(r'^\s*,\s*', '', cleaned)
|
78 |
-
cleaned = re.sub(r'\s*,\s*$', '', cleaned)
|
79 |
-
|
80 |
-
return cleaned.strip()
|
81 |
-
|
82 |
-
def extract_key_elements(self, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]:
|
83 |
-
"""Extrae elementos clave de las tres descripciones de CLIP"""
|
84 |
-
|
85 |
-
# Limpiar todas las descripciones
|
86 |
-
fast_clean = self.clean_clip_description(clip_fast)
|
87 |
-
classic_clean = self.clean_clip_description(clip_classic)
|
88 |
-
best_clean = self.clean_clip_description(clip_best)
|
89 |
-
|
90 |
-
# Combinar información única de las tres fuentes
|
91 |
-
all_descriptions = f"{fast_clean} {classic_clean} {best_clean}"
|
92 |
-
|
93 |
-
# Extraer elementos principales
|
94 |
-
elements = {
|
95 |
-
'main_subject': self._extract_main_subject(all_descriptions),
|
96 |
-
'action': self._extract_action(all_descriptions),
|
97 |
-
'location': self._extract_location(all_descriptions),
|
98 |
-
'mood': self._extract_mood(all_descriptions),
|
99 |
-
'special_features': self._extract_special_features(all_descriptions),
|
100 |
-
'technical_style': self._determine_technical_style(all_descriptions),
|
101 |
-
'original_essence': self._preserve_unique_elements(fast_clean, classic_clean, best_clean)
|
102 |
-
}
|
103 |
-
|
104 |
-
return elements
|
105 |
-
|
106 |
-
def _extract_main_subject(self, description: str) -> str:
|
107 |
-
"""Extrae el sujeto principal de la descripción"""
|
108 |
-
# Buscar patrones comunes de sujetos
|
109 |
-
subject_patterns = [
|
110 |
-
r'(a |an )?([\w\s]+ )?(man|woman|person|child|boy|girl|people|group)',
|
111 |
-
r'(a |an )?([\w\s]+ )?(portrait|face|figure)',
|
112 |
-
r'(a |an )?([\w\s]+ )?(landscape|mountain|building|structure)',
|
113 |
-
r'(a |an )?([\w\s]+ )?(animal|dog|cat|bird)',
|
114 |
-
]
|
115 |
-
|
116 |
-
for pattern in subject_patterns:
|
117 |
-
match = re.search(pattern, description)
|
118 |
-
if match:
|
119 |
-
return match.group(0).strip()
|
120 |
-
|
121 |
-
# Si no encuentra un patrón específico, tomar las primeras palabras significativas
|
122 |
-
words = description.split()
|
123 |
-
if len(words) > 2:
|
124 |
-
return ' '.join(words[:3])
|
125 |
-
|
126 |
-
return "figure"
|
127 |
-
|
128 |
-
def _extract_action(self, description: str) -> str:
|
129 |
-
"""Extrae la acción o pose del sujeto"""
|
130 |
-
action_keywords = ['standing', 'sitting', 'walking', 'running', 'looking',
|
131 |
-
'holding', 'wearing', 'posing', 'working', 'playing']
|
132 |
-
|
133 |
-
for keyword in action_keywords:
|
134 |
-
if keyword in description:
|
135 |
-
# Extraer contexto alrededor de la palabra clave
|
136 |
-
pattern = rf'\b\w*\s*{keyword}\s*\w*\s*\w*'
|
137 |
-
match = re.search(pattern, description)
|
138 |
-
if match:
|
139 |
-
return match.group(0).strip()
|
140 |
-
|
141 |
-
return ""
|
142 |
-
|
143 |
-
def _extract_location(self, description: str) -> str:
|
144 |
-
"""Extrae información de ubicación o ambiente"""
|
145 |
-
location_keywords = ['mountain', 'beach', 'forest', 'city', 'street', 'indoor',
|
146 |
-
'outdoor', 'studio', 'nature', 'urban', 'field', 'desert',
|
147 |
-
'ocean', 'lake', 'building', 'home', 'office']
|
148 |
-
|
149 |
-
found_locations = []
|
150 |
-
for keyword in location_keywords:
|
151 |
-
if keyword in description:
|
152 |
-
found_locations.append(keyword)
|
153 |
-
|
154 |
-
if found_locations:
|
155 |
-
return ' '.join(found_locations[:2]) # Máximo 2 ubicaciones
|
156 |
-
|
157 |
-
return ""
|
158 |
-
|
159 |
-
def _extract_mood(self, description: str) -> str:
|
160 |
-
"""Extrae el mood o atmósfera de la imagen"""
|
161 |
-
mood_keywords = ['dramatic', 'peaceful', 'serene', 'intense', 'mysterious',
|
162 |
-
'joyful', 'melancholic', 'powerful', 'ethereal', 'moody',
|
163 |
-
'bright', 'dark', 'atmospheric', 'dreamy', 'dynamic']
|
164 |
-
|
165 |
-
for keyword in mood_keywords:
|
166 |
-
if keyword in description:
|
167 |
-
return keyword
|
168 |
-
|
169 |
-
return ""
|
170 |
-
|
171 |
-
def _extract_special_features(self, description: str) -> List[str]:
|
172 |
-
"""Extrae características especiales únicas de la descripción"""
|
173 |
-
special_patterns = [
|
174 |
-
'light shining on [\w\s]+',
|
175 |
-
'wearing [\w\s]+',
|
176 |
-
'with [\w\s]+ in the background',
|
177 |
-
'surrounded by [\w\s]+',
|
178 |
-
'[\w\s]+ lighting',
|
179 |
-
'[\w\s]+ atmosphere'
|
180 |
-
]
|
181 |
-
|
182 |
-
features = []
|
183 |
-
for pattern in special_patterns:
|
184 |
-
matches = re.findall(pattern, description)
|
185 |
-
features.extend(matches)
|
186 |
-
|
187 |
-
return features[:3] # Limitar a 3 características especiales
|
188 |
-
|
189 |
-
def _determine_technical_style(self, description: str) -> str:
|
190 |
-
"""Determina el estilo técnico más apropiado basado en el contenido"""
|
191 |
-
style_scores = {}
|
192 |
-
|
193 |
-
for style, keywords in self.technical_indicators.items():
|
194 |
-
score = sum(1 for keyword in keywords if keyword in description)
|
195 |
-
if score > 0:
|
196 |
-
style_scores[style] = score
|
197 |
-
|
198 |
-
if style_scores:
|
199 |
-
return max(style_scores, key=style_scores.get)
|
200 |
-
|
201 |
-
return 'default'
|
202 |
-
|
203 |
-
def _preserve_unique_elements(self, fast: str, classic: str, best: str) -> str:
|
204 |
-
"""Preserva elementos únicos e interesantes de las descripciones"""
|
205 |
-
# Encontrar frases únicas que aparecen en alguna descripción
|
206 |
-
all_words = set(fast.split() + classic.split() + best.split())
|
207 |
-
common_words = set(['a', 'an', 'the', 'is', 'are', 'was', 'were', 'with', 'of', 'in', 'on', 'at'])
|
208 |
-
|
209 |
-
unique_words = all_words - common_words
|
210 |
-
|
211 |
-
# Buscar frases interesantes que contengan estas palabras únicas
|
212 |
-
unique_phrases = []
|
213 |
-
for desc in [fast, classic, best]:
|
214 |
-
if 'light shining' in desc or 'adventure gear' in desc or 'anthropological' in desc:
|
215 |
-
# Estas son frases únicas valiosas
|
216 |
-
unique_phrases.append(desc)
|
217 |
-
break
|
218 |
-
|
219 |
-
return ' '.join(unique_phrases[:1]) if unique_phrases else ""
|
220 |
-
|
221 |
-
def build_ultra_supreme_prompt(self, elements: Dict[str, Any], original_descriptions: List[str]) -> str:
|
222 |
-
"""Construye un prompt que POTENCIA la visión de CLIP"""
|
223 |
-
|
224 |
-
components = []
|
225 |
-
|
226 |
-
# 1. Sujeto principal con artículo apropiado
|
227 |
-
subject = elements['main_subject']
|
228 |
-
if subject:
|
229 |
-
# Determinar artículo
|
230 |
-
if subject[0].lower() in 'aeiou':
|
231 |
-
components.append(f"An {subject}")
|
232 |
-
else:
|
233 |
-
components.append(f"A {subject}")
|
234 |
else:
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
252 |
else:
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
277 |
else:
|
278 |
-
|
279 |
-
|
280 |
-
#
|
281 |
-
if
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
# Limpieza final
|
289 |
-
prompt = re.sub(r'\s+', ' ', prompt)
|
290 |
-
prompt = re.sub(r',\s*,+', ',', prompt)
|
291 |
-
prompt = re.sub(r'\s*,\s*', ', ', prompt)
|
292 |
-
|
293 |
-
# Capitalizar primera letra
|
294 |
-
if prompt:
|
295 |
-
prompt = prompt[0].upper() + prompt[1:]
|
296 |
-
|
297 |
-
logger.info(f"Prompt generado: {prompt}")
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
def ultra_supreme_analysis(self, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]:
|
302 |
-
"""Análisis que POTENCIA la información de CLIP en lugar de limitarla"""
|
303 |
|
304 |
-
|
|
|
305 |
|
306 |
-
#
|
307 |
-
|
|
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
}
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
"""Versión pública del método para compatibilidad"""
|
323 |
-
return self.build_ultra_supreme_prompt(ultra_analysis['elements'], clip_results)
|
324 |
-
|
325 |
-
def calculate_ultra_supreme_score(self, prompt: str, ultra_analysis: Dict[str, Any]) -> Tuple[int, Dict[str, int]]:
|
326 |
-
"""Calcula score basado en la riqueza del prompt generado"""
|
327 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
score = 0
|
329 |
-
breakdown = {}
|
330 |
|
331 |
-
#
|
332 |
-
|
333 |
-
if prompt.startswith(("A ", "An ")):
|
334 |
-
structure_score += 10
|
335 |
-
if prompt.count(",") >= 5:
|
336 |
-
structure_score += 10
|
337 |
-
score += structure_score
|
338 |
-
breakdown["structure"] = structure_score
|
339 |
|
340 |
-
#
|
341 |
-
|
342 |
-
|
343 |
-
unique_score += len(ultra_analysis['unique_features']) * 10
|
344 |
-
unique_score = min(unique_score, 30)
|
345 |
-
score += unique_score
|
346 |
-
breakdown["unique"] = unique_score
|
347 |
|
348 |
-
#
|
349 |
-
|
350 |
-
|
351 |
-
tech_score += 10
|
352 |
-
if any(term in prompt for term in ["f/", "mm"]):
|
353 |
-
tech_score += 10
|
354 |
-
score += tech_score
|
355 |
-
breakdown["technical"] = tech_score
|
356 |
|
357 |
-
#
|
358 |
-
|
359 |
-
|
360 |
-
mood_score += 15
|
361 |
-
score += mood_score
|
362 |
-
breakdown["mood"] = mood_score
|
363 |
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
-
return
|
|
|
1 |
"""
|
2 |
+
Ultra Supreme Optimizer - Main optimization engine for image analysis
|
3 |
+
VERSIÓN MEJORADA - Usa el prompt completo de CLIP Interrogator
|
4 |
"""
|
5 |
|
6 |
+
# IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
|
7 |
+
import spaces
|
8 |
+
import gc
|
9 |
import logging
|
10 |
+
from datetime import datetime
|
11 |
+
from typing import Tuple, Dict, Any, Optional
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import numpy as np
|
15 |
+
from PIL import Image
|
16 |
+
from clip_interrogator import Config, Interrogator
|
17 |
+
|
18 |
+
from analyzer import UltraSupremeAnalyzer
|
19 |
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
|
23 |
+
class UltraSupremeOptimizer:
|
24 |
+
"""Main optimizer class for ultra supreme image analysis"""
|
|
|
|
|
25 |
|
26 |
def __init__(self):
|
27 |
+
self.interrogator: Optional[Interrogator] = None
|
28 |
+
self.analyzer = UltraSupremeAnalyzer()
|
29 |
+
self.usage_count = 0
|
30 |
+
self.device = self._get_device()
|
31 |
+
self.is_initialized = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
@staticmethod
|
34 |
+
def _get_device() -> str:
|
35 |
+
"""Determine the best available device for computation"""
|
36 |
+
if torch.cuda.is_available():
|
37 |
+
return "cuda"
|
38 |
+
elif torch.backends.mps.is_available():
|
39 |
+
return "mps"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
else:
|
41 |
+
return "cpu"
|
42 |
+
|
43 |
+
def initialize_model(self) -> bool:
|
44 |
+
"""Initialize the CLIP interrogator model"""
|
45 |
+
if self.is_initialized:
|
46 |
+
return True
|
47 |
+
|
48 |
+
try:
|
49 |
+
config = Config(
|
50 |
+
clip_model_name="ViT-L-14/openai",
|
51 |
+
download_cache=True,
|
52 |
+
chunk_size=2048,
|
53 |
+
quiet=True,
|
54 |
+
device=self.device
|
55 |
+
)
|
56 |
+
|
57 |
+
self.interrogator = Interrogator(config)
|
58 |
+
self.is_initialized = True
|
59 |
+
|
60 |
+
# Clean up memory after initialization
|
61 |
+
if self.device == "cpu":
|
62 |
+
gc.collect()
|
63 |
else:
|
64 |
+
torch.cuda.empty_cache()
|
65 |
+
|
66 |
+
return True
|
67 |
+
|
68 |
+
except Exception as e:
|
69 |
+
logger.error(f"Initialization error: {e}")
|
70 |
+
return False
|
71 |
+
|
72 |
+
def optimize_image(self, image: Any) -> Optional[Image.Image]:
|
73 |
+
"""Optimize image for processing"""
|
74 |
+
if image is None:
|
75 |
+
return None
|
76 |
+
|
77 |
+
try:
|
78 |
+
# Convert to PIL Image if necessary
|
79 |
+
if isinstance(image, np.ndarray):
|
80 |
+
image = Image.fromarray(image)
|
81 |
+
elif not isinstance(image, Image.Image):
|
82 |
+
image = Image.open(image)
|
83 |
+
|
84 |
+
# Convert to RGB if necessary
|
85 |
+
if image.mode != 'RGB':
|
86 |
+
image = image.convert('RGB')
|
87 |
+
|
88 |
+
# Resize if too large
|
89 |
+
max_size = 768 if self.device != "cpu" else 512
|
90 |
+
if image.size[0] > max_size or image.size[1] > max_size:
|
91 |
+
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
92 |
+
|
93 |
+
return image
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
logger.error(f"Image optimization error: {e}")
|
97 |
+
return None
|
98 |
+
|
99 |
+
def apply_flux_rules(self, base_prompt: str) -> str:
|
100 |
+
"""Aplica las reglas de Flux a un prompt base de CLIP Interrogator"""
|
101 |
+
|
102 |
+
# Limpiar el prompt de elementos no deseados
|
103 |
+
cleanup_patterns = [
|
104 |
+
r',\s*trending on artstation',
|
105 |
+
r',\s*trending on [^,]+',
|
106 |
+
r',\s*\d+k\s*',
|
107 |
+
r',\s*\d+k resolution',
|
108 |
+
r',\s*artstation',
|
109 |
+
r',\s*concept art',
|
110 |
+
r',\s*digital art',
|
111 |
+
r',\s*by greg rutkowski', # Remover artistas genéricos overused
|
112 |
+
]
|
113 |
|
114 |
+
cleaned_prompt = base_prompt
|
115 |
+
for pattern in cleanup_patterns:
|
116 |
+
cleaned_prompt = re.sub(pattern, '', cleaned_prompt, flags=re.IGNORECASE)
|
117 |
+
|
118 |
+
# Detectar el tipo de imagen para añadir configuración de cámara apropiada
|
119 |
+
camera_config = ""
|
120 |
+
if any(word in base_prompt.lower() for word in ['portrait', 'person', 'man', 'woman', 'face']):
|
121 |
+
camera_config = ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography"
|
122 |
+
elif any(word in base_prompt.lower() for word in ['landscape', 'mountain', 'nature', 'outdoor']):
|
123 |
+
camera_config = ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography"
|
124 |
+
elif any(word in base_prompt.lower() for word in ['street', 'urban', 'city']):
|
125 |
+
camera_config = ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography"
|
126 |
else:
|
127 |
+
camera_config = ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
|
128 |
+
|
129 |
+
# Añadir mejoras de iluminación si no están presentes
|
130 |
+
if 'lighting' not in cleaned_prompt.lower():
|
131 |
+
if 'dramatic' in cleaned_prompt.lower():
|
132 |
+
cleaned_prompt += ", dramatic cinematic lighting"
|
133 |
+
elif 'portrait' in cleaned_prompt.lower():
|
134 |
+
cleaned_prompt += ", professional studio lighting with subtle rim light"
|
135 |
+
else:
|
136 |
+
cleaned_prompt += ", masterful natural lighting"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# Construir el prompt final
|
139 |
+
final_prompt = cleaned_prompt + camera_config
|
|
|
|
|
140 |
|
141 |
+
# Asegurar que empiece con mayúscula
|
142 |
+
final_prompt = final_prompt[0].upper() + final_prompt[1:] if final_prompt else final_prompt
|
143 |
|
144 |
+
# Limpiar espacios y comas duplicadas
|
145 |
+
final_prompt = re.sub(r'\s+', ' ', final_prompt)
|
146 |
+
final_prompt = re.sub(r',\s*,+', ',', final_prompt)
|
147 |
|
148 |
+
return final_prompt
|
149 |
+
|
150 |
+
@spaces.GPU
|
151 |
+
def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
|
152 |
+
"""
|
153 |
+
Generate ultra supreme prompt from image usando el pipeline completo
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
Tuple of (prompt, analysis_info, score, breakdown)
|
157 |
+
"""
|
158 |
+
try:
|
159 |
+
# Initialize model if needed
|
160 |
+
if not self.is_initialized:
|
161 |
+
if not self.initialize_model():
|
162 |
+
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
|
163 |
+
|
164 |
+
# Validate input
|
165 |
+
if image is None:
|
166 |
+
return "❌ Please upload an image.", "No image provided.", 0, {}
|
167 |
+
|
168 |
+
self.usage_count += 1
|
169 |
+
|
170 |
+
# Optimize image
|
171 |
+
image = self.optimize_image(image)
|
172 |
+
if image is None:
|
173 |
+
return "❌ Image processing failed.", "Invalid image format.", 0, {}
|
174 |
+
|
175 |
+
start_time = datetime.now()
|
176 |
+
|
177 |
+
# NUEVO PIPELINE: Usar CLIP Interrogator completo
|
178 |
+
logger.info("ULTRA SUPREME ANALYSIS - Usando pipeline completo de CLIP Interrogator")
|
179 |
+
|
180 |
+
# 1. Obtener el prompt COMPLETO de CLIP Interrogator (no solo análisis)
|
181 |
+
# Este incluye descripción + artistas + estilos + mediums
|
182 |
+
full_prompt = self.interrogator.interrogate(image)
|
183 |
+
logger.info(f"Prompt completo de CLIP Interrogator: {full_prompt}")
|
184 |
+
|
185 |
+
# 2. También obtener los análisis individuales para el reporte
|
186 |
+
clip_fast = self.interrogator.interrogate_fast(image)
|
187 |
+
clip_classic = self.interrogator.interrogate_classic(image)
|
188 |
+
|
189 |
+
logger.info(f"Análisis Fast: {clip_fast}")
|
190 |
+
logger.info(f"Análisis Classic: {clip_classic}")
|
191 |
+
|
192 |
+
# 3. Aplicar reglas de Flux al prompt completo
|
193 |
+
import re
|
194 |
+
optimized_prompt = self.apply_flux_rules(full_prompt)
|
195 |
+
|
196 |
+
# 4. Crear análisis para el reporte (simplificado)
|
197 |
+
analysis_summary = {
|
198 |
+
"base_prompt": full_prompt,
|
199 |
+
"clip_fast": clip_fast,
|
200 |
+
"clip_classic": clip_classic,
|
201 |
+
"optimized": optimized_prompt,
|
202 |
+
"detected_style": self._detect_style(full_prompt),
|
203 |
+
"detected_subject": self._detect_subject(full_prompt)
|
204 |
+
}
|
205 |
+
|
206 |
+
# 5. Calcular score basado en la riqueza del prompt
|
207 |
+
score = self._calculate_score(optimized_prompt, full_prompt)
|
208 |
+
breakdown = {
|
209 |
+
"base_quality": min(len(full_prompt) // 10, 25),
|
210 |
+
"technical_enhancement": 25 if "Shot on" in optimized_prompt else 0,
|
211 |
+
"lighting_quality": 25 if "lighting" in optimized_prompt.lower() else 0,
|
212 |
+
"composition": 25 if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic"]) else 0
|
213 |
+
}
|
214 |
+
score = sum(breakdown.values())
|
215 |
+
|
216 |
+
end_time = datetime.now()
|
217 |
+
duration = (end_time - start_time).total_seconds()
|
218 |
+
|
219 |
+
# Memory cleanup
|
220 |
+
if self.device == "cpu":
|
221 |
+
gc.collect()
|
222 |
+
else:
|
223 |
+
torch.cuda.empty_cache()
|
224 |
+
|
225 |
+
# Generate analysis report
|
226 |
+
analysis_info = self._generate_analysis_report(
|
227 |
+
analysis_summary, score, breakdown, duration
|
228 |
+
)
|
229 |
+
|
230 |
+
return optimized_prompt, analysis_info, score, breakdown
|
231 |
+
|
232 |
+
except Exception as e:
|
233 |
+
logger.error(f"Ultra supreme generation error: {e}")
|
234 |
+
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
|
235 |
+
|
236 |
+
def _detect_style(self, prompt: str) -> str:
|
237 |
+
"""Detecta el estilo principal del prompt"""
|
238 |
+
styles = {
|
239 |
+
"portrait": ["portrait", "person", "face", "headshot"],
|
240 |
+
"landscape": ["landscape", "mountain", "nature", "scenery"],
|
241 |
+
"street": ["street", "urban", "city"],
|
242 |
+
"artistic": ["artistic", "abstract", "conceptual"],
|
243 |
+
"dramatic": ["dramatic", "cinematic", "moody"]
|
244 |
}
|
245 |
|
246 |
+
for style_name, keywords in styles.items():
|
247 |
+
if any(keyword in prompt.lower() for keyword in keywords):
|
248 |
+
return style_name
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
return "general"
|
251 |
+
|
252 |
+
def _detect_subject(self, prompt: str) -> str:
|
253 |
+
"""Detecta el sujeto principal del prompt"""
|
254 |
+
# Tomar las primeras palabras significativas
|
255 |
+
words = prompt.split(',')[0].split()
|
256 |
+
if len(words) > 3:
|
257 |
+
return ' '.join(words[:4])
|
258 |
+
return prompt.split(',')[0]
|
259 |
+
|
260 |
+
def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
|
261 |
+
"""Calcula el score basado en la calidad del prompt"""
|
262 |
score = 0
|
|
|
263 |
|
264 |
+
# Base score por longitud y riqueza
|
265 |
+
score += min(len(base_prompt) // 10, 25)
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
+
# Technical enhancement
|
268 |
+
if "Shot on" in optimized_prompt:
|
269 |
+
score += 25
|
|
|
|
|
|
|
|
|
270 |
|
271 |
+
# Lighting quality
|
272 |
+
if "lighting" in optimized_prompt.lower():
|
273 |
+
score += 25
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
+
# Professional quality
|
276 |
+
if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic", "cinematic"]):
|
277 |
+
score += 25
|
|
|
|
|
|
|
278 |
|
279 |
+
return min(score, 100)
|
280 |
+
|
281 |
+
def _generate_analysis_report(self, analysis: Dict[str, Any],
|
282 |
+
score: int, breakdown: Dict[str, int],
|
283 |
+
duration: float) -> str:
|
284 |
+
"""Generate detailed analysis report"""
|
285 |
+
|
286 |
+
gpu_status = "⚡ ZeroGPU" if torch.cuda.is_available() else "💻 CPU"
|
287 |
+
|
288 |
+
# Extraer información clave
|
289 |
+
detected_style = analysis.get("detected_style", "general").title()
|
290 |
+
detected_subject = analysis.get("detected_subject", "Unknown")
|
291 |
+
base_prompt_preview = analysis.get("base_prompt", "")[:100] + "..." if len(analysis.get("base_prompt", "")) > 100 else analysis.get("base_prompt", "")
|
292 |
+
|
293 |
+
analysis_info = f"""**🚀 ULTRA SUPREME ANALYSIS COMPLETE**
|
294 |
+
**Processing:** {gpu_status} • {duration:.1f}s • Full CLIP Interrogator Pipeline
|
295 |
+
**Ultra Score:** {score}/100 • Breakdown: Base({breakdown.get('base_quality',0)}) Technical({breakdown.get('technical_enhancement',0)}) Lighting({breakdown.get('lighting_quality',0)}) Composition({breakdown.get('composition',0)})
|
296 |
+
**Generation:** #{self.usage_count}
|
297 |
+
|
298 |
+
**🧠 INTELLIGENT DETECTION:**
|
299 |
+
- **Detected Style:** {detected_style}
|
300 |
+
- **Main Subject:** {detected_subject}
|
301 |
+
- **Pipeline:** CLIP Interrogator → Flux Optimization → Technical Enhancement
|
302 |
+
|
303 |
+
**📊 CLIP INTERROGATOR ANALYSIS:**
|
304 |
+
- **Base Prompt:** {base_prompt_preview}
|
305 |
+
- **Fast Analysis:** {analysis.get('clip_fast', '')[:80]}...
|
306 |
+
- **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
|
307 |
+
|
308 |
+
**⚡ OPTIMIZATION APPLIED:**
|
309 |
+
- ✅ Preserved CLIP Interrogator's rich description
|
310 |
+
- ✅ Added professional camera specifications
|
311 |
+
- ✅ Enhanced lighting descriptions
|
312 |
+
- ✅ Applied Flux-specific optimizations
|
313 |
+
- ✅ Removed redundant/generic elements
|
314 |
+
|
315 |
+
**🔬 Powered by Pariente AI Research + CLIP Interrogator**"""
|
316 |
|
317 |
+
return analysis_info
|