Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Phramer AI - Main Gradio Interface | |
By Pariente AI, for MIA TV Series | |
Multimodal tool that reads images and turns them into refined, photo-realistic prompts. | |
Ready for Midjourney, Flux or any generative engine. | |
""" | |
import gradio as gr | |
import logging | |
import warnings | |
import os | |
from typing import Tuple | |
from config import APP_CONFIG, ENVIRONMENT | |
from processor import process_image_simple, phramer_optimizer | |
from utils import setup_logging, clean_memory | |
# Configure environment | |
warnings.filterwarnings("ignore", category=FutureWarning) | |
warnings.filterwarnings("ignore", category=UserWarning) | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# Setup logging | |
setup_logging(ENVIRONMENT["log_level"]) | |
logger = logging.getLogger(__name__) | |
def process_image_interface(image) -> Tuple[str, str, str]: | |
""" | |
Main interface function for image processing | |
Args: | |
image: Input image from Gradio interface | |
Returns: | |
Tuple of (prompt, analysis_report, score_html) | |
""" | |
try: | |
if image is None: | |
return ( | |
"Please upload an image to analyze", | |
"No image provided for analysis.", | |
'<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>' | |
) | |
logger.info("Processing image through Phramer AI interface") | |
prompt, report, score_html = process_image_simple(image) | |
return prompt, report, score_html | |
except Exception as e: | |
logger.error(f"Interface processing error: {e}", exc_info=True) | |
error_msg = f"Processing failed: {str(e)}" | |
return ( | |
"❌ Processing failed", | |
f"**Error:** {error_msg}\n\nPlease try again with a different image.", | |
'<div style="text-align: center; padding: 1rem; color: red;"><div style="font-size: 2rem;">0</div><div style="font-size: 0.875rem;">Error</div></div>' | |
) | |
def clear_interface() -> Tuple[str, str, str]: | |
"""Clear all interface outputs and free memory""" | |
clean_memory() | |
logger.info("Interface cleared") | |
return ( | |
"", | |
"", | |
'<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>' | |
) | |
def get_stats_info() -> str: | |
"""Get current processing statistics""" | |
try: | |
stats = phramer_optimizer.get_enhanced_stats() | |
stats_text = f"""**Processing Statistics:** | |
• **Total Images:** {stats['total_processed']} | |
• **Successful:** {stats['successful_analyses']} | |
• **Failed:** {stats['failed_analyses']} | |
• **Success Rate:** {stats['success_rate']:.1%} | |
• **Average Time:** {stats['average_processing_time']:.1f}s | |
• **Device:** {stats['device_info']['device'].upper()} | |
""" | |
return stats_text | |
except Exception as e: | |
logger.error(f"Stats retrieval error: {e}") | |
return "Statistics unavailable" | |
def create_interface(): | |
"""Create the main Gradio interface""" | |
# Updated CSS with Phramer AI branding | |
css = """ | |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap'); | |
.gradio-container { | |
max-width: 1600px !important; | |
margin: 0 auto !important; | |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important; | |
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important; | |
} | |
/* Text visibility fixes */ | |
.markdown-text, .markdown-text *, | |
.prose, .prose *, | |
.gr-markdown, .gr-markdown *, | |
div[class*="markdown"], div[class*="markdown"] * { | |
color: #1f2937 !important; | |
} | |
.markdown-text h1, .markdown-text h2, .markdown-text h3, | |
.prose h1, .prose h2, .prose h3, | |
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 { | |
color: #111827 !important; | |
font-weight: 700 !important; | |
} | |
.markdown-text p, .markdown-text li, .markdown-text ul, .markdown-text ol, | |
.prose p, .prose li, .prose ul, .prose ol, | |
.gr-markdown p, .gr-markdown li, .gr-markdown ul, .gr-markdown ol { | |
color: #374151 !important; | |
} | |
.markdown-text strong, .prose strong, .gr-markdown strong { | |
color: #111827 !important; | |
font-weight: 700 !important; | |
} | |
/* Header styling */ | |
.main-header { | |
text-align: center; | |
padding: 3rem 0 4rem 0; | |
background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%); | |
color: white; | |
margin: -2rem -2rem 3rem -2rem; | |
border-radius: 0 0 32px 32px; | |
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25); | |
position: relative; | |
overflow: hidden; | |
} | |
.main-header::before { | |
content: ''; | |
position: absolute; | |
top: 0; | |
left: 0; | |
right: 0; | |
bottom: 0; | |
background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%); | |
z-index: 1; | |
} | |
.main-title { | |
font-size: 4rem !important; | |
font-weight: 900 !important; | |
margin: 0 0 1rem 0 !important; | |
letter-spacing: -0.05em !important; | |
background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
background-clip: text; | |
position: relative; | |
z-index: 2; | |
} | |
.subtitle { | |
font-size: 1.5rem !important; | |
font-weight: 500 !important; | |
opacity: 0.95 !important; | |
margin: 0 0 0.5rem 0 !important; | |
position: relative; | |
z-index: 2; | |
color: #ffffff !important; | |
} | |
.tagline { | |
font-size: 1.1rem !important; | |
font-weight: 400 !important; | |
opacity: 0.85 !important; | |
margin: 0 !important; | |
position: relative; | |
z-index: 2; | |
color: #e5e7eb !important; | |
font-style: italic; | |
} | |
.prompt-output { | |
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important; | |
font-size: 15px !important; | |
line-height: 1.8 !important; | |
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important; | |
border: 2px solid #e2e8f0 !important; | |
border-radius: 20px !important; | |
padding: 2.5rem !important; | |
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important; | |
transition: all 0.3s ease !important; | |
color: #1f2937 !important; | |
} | |
.prompt-output:hover { | |
box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important; | |
transform: translateY(-2px) !important; | |
} | |
""" | |
with gr.Blocks( | |
theme=gr.themes.Soft(), | |
title="Phramer AI", | |
css=css | |
) as interface: | |
gr.HTML(""" | |
<div class="main-header"> | |
<div class="main-title">Phramer AI</div> | |
<div class="subtitle">By Pariente AI, for MIA TV Series</div> | |
<div class="tagline">Multimodal tool that reads images and turns them into refined, photo-realistic prompts</div> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## Image Analysis") | |
image_input = gr.Image( | |
label="Upload image for analysis", | |
type="pil", | |
height=500 | |
) | |
analyze_btn = gr.Button( | |
"🔍 Generate Prompt", | |
variant="primary", | |
size="lg" | |
) | |
gr.Markdown(""" | |
### How Phramer AI Works: | |
**1. Deep Analysis:** Custom Bagel architecture analyzes your image for semantic-visual understanding. | |
**2. Knowledge Enhancement:** Applies curated photographic knowledge base with camera settings and composition principles. | |
**3. Prompt Generation:** Creates structured prompts with technical details, mood, and style specifications. | |
**4. Multi-Engine Ready:** Optimized for Flux, Midjourney, and other diffusion platforms. | |
**Perfect for:** Cinematic storyboards, photorealistic scenes, visual concept exploration. | |
**Supported formats:** JPG, PNG, WebP up to 1024px | |
""") | |
# Statistics | |
with gr.Accordion("📊 Processing Statistics", open=False): | |
stats_output = gr.Markdown(value="No processing completed yet.") | |
refresh_stats_btn = gr.Button("Refresh Stats", size="sm") | |
with gr.Column(scale=1): | |
gr.Markdown("## Generated Prompt") | |
score_output = gr.HTML( | |
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>' | |
) | |
prompt_output = gr.Textbox( | |
label="🎯 Photo-Realistic Prompt", | |
placeholder="Upload an image to generate a refined prompt ready for any generative engine...", | |
lines=12, | |
max_lines=20, | |
show_copy_button=True | |
) | |
info_output = gr.Markdown(value="") | |
clear_btn = gr.Button("🗑️ Clear Analysis", size="sm") | |
# Event handlers | |
analyze_btn.click( | |
fn=process_image_interface, | |
inputs=[image_input], | |
outputs=[prompt_output, info_output, score_output] | |
) | |
clear_btn.click( | |
fn=clear_interface, | |
outputs=[prompt_output, info_output, score_output] | |
) | |
refresh_stats_btn.click( | |
fn=get_stats_info, | |
outputs=stats_output | |
) | |
gr.Markdown(""" | |
--- | |
### About Phramer AI | |
**Phramer AI** is an advanced multimodal system developed by **Pariente AI** for the **MIA TV Series** creative pipeline. | |
This tool bridges the gap between image understanding and generative prompting, analyzing uploaded images through | |
a custom Bagel architecture and enhancing them with professional photographic knowledge to create detailed, | |
structured prompts ready for Flux, Midjourney, or any diffusion-based platform. | |
Whether creating cinematic storyboards, photorealistic scenes, or exploring visual concepts, Phramer AI delivers | |
refined prompts with camera settings, composition hints, mood specifications, and style guidance. | |
**Pariente AI** • Advanced Multimodal AI Research & Development • **MIA TV Series** | |
""") | |
return interface | |
def main(): | |
"""Main application entry point""" | |
logger.info("Starting Phramer AI by Pariente AI") | |
# Create and launch interface | |
demo = create_interface() | |
# Launch with proper configuration | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True, | |
show_error=True | |
) | |
if __name__ == "__main__": | |
main() |