Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Ultra Supreme Analyzer for image analysis and prompt building | |
""" | |
import re | |
from typing import Dict, List, Any, Tuple | |
from constants import ( | |
FORBIDDEN_ELEMENTS, | |
MICRO_AGE_INDICATORS, | |
ULTRA_FACIAL_ANALYSIS, | |
EMOTION_MICRO_EXPRESSIONS, | |
CULTURAL_RELIGIOUS_ULTRA, | |
CLOTHING_ACCESSORIES_ULTRA, | |
ENVIRONMENTAL_ULTRA_ANALYSIS, | |
POSE_BODY_LANGUAGE_ULTRA, | |
COMPOSITION_PHOTOGRAPHY_ULTRA, | |
TECHNICAL_PHOTOGRAPHY_ULTRA, | |
QUALITY_DESCRIPTORS_ULTRA, | |
GENDER_INDICATORS | |
) | |
class UltraSupremeAnalyzer: | |
""" | |
ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE | |
""" | |
def __init__(self): | |
self.forbidden_elements = FORBIDDEN_ELEMENTS | |
self.micro_age_indicators = MICRO_AGE_INDICATORS | |
self.ultra_facial_analysis = ULTRA_FACIAL_ANALYSIS | |
self.emotion_micro_expressions = EMOTION_MICRO_EXPRESSIONS | |
self.cultural_religious_ultra = CULTURAL_RELIGIOUS_ULTRA | |
self.clothing_accessories_ultra = CLOTHING_ACCESSORIES_ULTRA | |
self.environmental_ultra_analysis = ENVIRONMENTAL_ULTRA_ANALYSIS | |
self.pose_body_language_ultra = POSE_BODY_LANGUAGE_ULTRA | |
self.composition_photography_ultra = COMPOSITION_PHOTOGRAPHY_ULTRA | |
self.technical_photography_ultra = TECHNICAL_PHOTOGRAPHY_ULTRA | |
self.quality_descriptors_ultra = QUALITY_DESCRIPTORS_ULTRA | |
def ultra_supreme_analysis(self, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]: | |
"""ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE""" | |
combined_analysis = { | |
"fast": clip_fast.lower(), | |
"classic": clip_classic.lower(), | |
"best": clip_best.lower(), | |
"combined": f"{clip_fast} {clip_classic} {clip_best}".lower() | |
} | |
ultra_result = { | |
"demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []}, | |
"facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []}, | |
"emotional_state": {"primary_emotion": None, "emotion_confidence": 0, "micro_expressions": [], "overall_demeanor": []}, | |
"clothing_accessories": {"headwear": [], "eyewear": [], "clothing": [], "accessories": []}, | |
"environmental": {"setting_type": None, "specific_location": None, "lighting_analysis": [], "atmosphere": []}, | |
"pose_composition": {"body_language": [], "head_position": [], "eye_contact": [], "posture": []}, | |
"technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}}, | |
"intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0} | |
} | |
# ULTRA DEEP AGE ANALYSIS | |
age_scores = {} | |
for age_category, indicators in self.micro_age_indicators.items(): | |
score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"]) | |
if score > 0: | |
age_scores[age_category] = score | |
if age_scores: | |
ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get) | |
ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]] | |
# GENDER DETECTION WITH CONFIDENCE | |
male_score = sum(1 for indicator in GENDER_INDICATORS["male"] if indicator in combined_analysis["combined"]) | |
female_score = sum(1 for indicator in GENDER_INDICATORS["female"] if indicator in combined_analysis["combined"]) | |
if male_score > female_score: | |
ultra_result["demographic"]["gender"] = "man" | |
elif female_score > male_score: | |
ultra_result["demographic"]["gender"] = "woman" | |
# ULTRA CULTURAL/RELIGIOUS ANALYSIS | |
for culture_type, indicators in self.cultural_religious_ultra.items(): | |
if isinstance(indicators, list): | |
for indicator in indicators: | |
if indicator.lower() in combined_analysis["combined"]: | |
ultra_result["demographic"]["cultural_religious"].append(indicator) | |
# COMPREHENSIVE FACIAL FEATURE ANALYSIS | |
for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items(): | |
for feature in features: | |
if feature in combined_analysis["combined"]: | |
ultra_result["facial_ultra"]["facial_hair"].append(feature) | |
# Eyes analysis | |
for eye_category, features in self.ultra_facial_analysis["eye_features"].items(): | |
for feature in features: | |
if feature in combined_analysis["combined"]: | |
ultra_result["facial_ultra"]["eyes"].append(feature) | |
# EMOTION AND MICRO-EXPRESSION ANALYSIS | |
emotion_scores = {} | |
for emotion in self.emotion_micro_expressions["complex_emotions"]: | |
if emotion in combined_analysis["combined"]: | |
emotion_scores[emotion] = combined_analysis["combined"].count(emotion) | |
if emotion_scores: | |
ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get) | |
ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]] | |
# CLOTHING AND ACCESSORIES ANALYSIS | |
for category, items in self.clothing_accessories_ultra.items(): | |
if isinstance(items, list): | |
for item in items: | |
if item in combined_analysis["combined"]: | |
if category == "clothing_types": | |
ultra_result["clothing_accessories"]["clothing"].append(item) | |
elif category == "clothing_styles": | |
ultra_result["clothing_accessories"]["clothing"].append(item) | |
elif category in ["headwear", "eyewear", "accessories"]: | |
ultra_result["clothing_accessories"][category].append(item) | |
# ENVIRONMENTAL ULTRA ANALYSIS | |
setting_scores = {} | |
for main_setting, sub_settings in self.environmental_ultra_analysis.items(): | |
if isinstance(sub_settings, dict): | |
for sub_type, locations in sub_settings.items(): | |
score = sum(1 for location in locations if location in combined_analysis["combined"]) | |
if score > 0: | |
setting_scores[sub_type] = score | |
if setting_scores: | |
ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get) | |
# LIGHTING ANALYSIS | |
for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items(): | |
for light_type in light_types: | |
if light_type in combined_analysis["combined"]: | |
ultra_result["environmental"]["lighting_analysis"].append(light_type) | |
# POSE AND BODY LANGUAGE ANALYSIS | |
for pose_category, indicators in self.pose_body_language_ultra.items(): | |
for indicator in indicators: | |
if indicator in combined_analysis["combined"]: | |
if pose_category in ultra_result["pose_composition"]: | |
ultra_result["pose_composition"][pose_category].append(indicator) | |
# TECHNICAL PHOTOGRAPHY ANALYSIS | |
for shot_type in self.composition_photography_ultra["shot_types"]: | |
if shot_type in combined_analysis["combined"]: | |
ultra_result["technical_analysis"]["shot_type"] = shot_type | |
break | |
# CALCULATE INTELLIGENCE METRICS | |
total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0) | |
for category in ultra_result.values() | |
if isinstance(category, dict) | |
for v in category.values()) | |
ultra_result["intelligence_metrics"]["total_features_detected"] = total_features | |
ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100) | |
ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20 | |
return ultra_result | |
def build_ultra_supreme_prompt(self, ultra_analysis: Dict[str, Any], clip_results: List[str]) -> str: | |
"""BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY""" | |
components = [] | |
# 1. ULTRA INTELLIGENT ARTICLE SELECTION | |
subject_desc = [] | |
if ultra_analysis["demographic"]["cultural_religious"]: | |
subject_desc.extend(ultra_analysis["demographic"]["cultural_religious"][:1]) | |
if ultra_analysis["demographic"]["age_category"] and ultra_analysis["demographic"]["age_category"] != "middle_aged": | |
subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " ")) | |
if ultra_analysis["demographic"]["gender"]: | |
subject_desc.append(ultra_analysis["demographic"]["gender"]) | |
if subject_desc: | |
full_subject = " ".join(subject_desc) | |
article = "An" if full_subject[0].lower() in 'aeiou' else "A" | |
else: | |
article = "A" | |
components.append(article) | |
# 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules) | |
adjectives = [] | |
# Age-based adjectives | |
age_cat = ultra_analysis["demographic"]["age_category"] | |
if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]: | |
adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2]) | |
# Emotion-based adjectives | |
emotion = ultra_analysis["emotional_state"]["primary_emotion"] | |
if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]: | |
adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1]) | |
# Default if none found | |
if not adjectives: | |
adjectives = ["distinguished", "professional"] | |
components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives | |
# 3. ULTRA ENHANCED SUBJECT | |
if subject_desc: | |
components.append(" ".join(subject_desc)) | |
else: | |
components.append("person") | |
# 4. ULTRA DETAILED FACIAL FEATURES | |
facial_details = [] | |
# Eyes | |
if ultra_analysis["facial_ultra"]["eyes"]: | |
eye_desc = ultra_analysis["facial_ultra"]["eyes"][0] | |
facial_details.append(f"with {eye_desc}") | |
# Facial hair with ultra detail | |
if ultra_analysis["facial_ultra"]["facial_hair"]: | |
beard_details = ultra_analysis["facial_ultra"]["facial_hair"] | |
if any("silver" in detail or "gray" in detail or "grey" in detail for detail in beard_details): | |
facial_details.append("with a distinguished silver beard") | |
elif any("beard" in detail for detail in beard_details): | |
facial_details.append("with a full well-groomed beard") | |
if facial_details: | |
components.extend(facial_details) | |
# 5. CLOTHING AND ACCESSORIES ULTRA | |
clothing_details = [] | |
# Eyewear | |
if ultra_analysis["clothing_accessories"]["eyewear"]: | |
eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0] | |
clothing_details.append(f"wearing {eyewear}") | |
# Headwear | |
if ultra_analysis["clothing_accessories"]["headwear"]: | |
headwear = ultra_analysis["clothing_accessories"]["headwear"][0] | |
if ultra_analysis["demographic"]["cultural_religious"]: | |
clothing_details.append("wearing a traditional black hat") | |
else: | |
clothing_details.append(f"wearing a {headwear}") | |
if clothing_details: | |
components.extend(clothing_details) | |
# 6. ULTRA POSE AND BODY LANGUAGE | |
pose_description = "positioned with natural dignity" | |
if ultra_analysis["pose_composition"]["posture"]: | |
posture = ultra_analysis["pose_composition"]["posture"][0] | |
pose_description = f"maintaining {posture}" | |
elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait": | |
pose_description = "captured in contemplative portrait pose" | |
components.append(pose_description) | |
# 7. ULTRA ENVIRONMENTAL CONTEXT | |
environment_desc = "in a thoughtfully composed environment" | |
if ultra_analysis["environmental"]["setting_type"]: | |
setting_map = { | |
"residential": "in an intimate home setting", | |
"office": "in a professional office environment", | |
"religious": "in a sacred traditional space", | |
"formal": "in a distinguished formal setting" | |
} | |
environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], | |
"in a carefully arranged professional setting") | |
components.append(environment_desc) | |
# 8. ULTRA SOPHISTICATED LIGHTING | |
lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture" | |
if ultra_analysis["environmental"]["lighting_analysis"]: | |
primary_light = ultra_analysis["environmental"]["lighting_analysis"][0] | |
if "dramatic" in primary_light: | |
lighting_desc = "bathed in dramatic chiaroscuro lighting that creates compelling depth and shadow play" | |
elif "natural" in primary_light or "window" in primary_light: | |
lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth" | |
elif "soft" in primary_light: | |
lighting_desc = "softly illuminated to reveal nuanced expressions and character" | |
components.append(lighting_desc) | |
# 9. ULTRA TECHNICAL SPECIFICATIONS | |
if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]: | |
camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture" | |
elif ultra_analysis["demographic"]["cultural_religious"]: | |
camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture" | |
else: | |
camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture" | |
components.append(camera_setup) | |
# 10. ULTRA QUALITY DESIGNATION | |
quality_designation = "professional portrait photography" | |
if ultra_analysis["demographic"]["cultural_religious"]: | |
quality_designation = "fine art documentary photography" | |
elif ultra_analysis["emotional_state"]["primary_emotion"]: | |
quality_designation = "expressive portrait photography" | |
components.append(quality_designation) | |
# ULTRA FINAL ASSEMBLY | |
prompt = ", ".join(components) | |
# Ultra cleaning and optimization | |
prompt = re.sub(r'\s+', ' ', prompt) | |
prompt = re.sub(r',\s*,+', ',', prompt) | |
prompt = re.sub(r'\s*,\s*', ', ', prompt) | |
prompt = prompt.replace(" ,", ",") | |
if prompt: | |
prompt = prompt[0].upper() + prompt[1:] | |
return prompt | |
def calculate_ultra_supreme_score(self, prompt: str, ultra_analysis: Dict[str, Any]) -> Tuple[int, Dict[str, int]]: | |
"""ULTRA SUPREME INTELLIGENCE SCORING""" | |
score = 0 | |
breakdown = {} | |
# Structure Excellence (15 points) | |
structure_score = 0 | |
if prompt.startswith(("A", "An")): | |
structure_score += 5 | |
if prompt.count(",") >= 8: | |
structure_score += 10 | |
score += structure_score | |
breakdown["structure"] = structure_score | |
# Feature Detection Depth (25 points) | |
features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25) | |
score += features_score | |
breakdown["features"] = features_score | |
# Cultural/Religious Awareness (20 points) | |
cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20) | |
score += cultural_score | |
breakdown["cultural"] = cultural_score | |
# Emotional Intelligence (15 points) | |
emotion_score = 0 | |
if ultra_analysis["emotional_state"]["primary_emotion"]: | |
emotion_score += 10 | |
if ultra_analysis["emotional_state"]["emotion_confidence"] > 1: | |
emotion_score += 5 | |
score += emotion_score | |
breakdown["emotional"] = emotion_score | |
# Technical Sophistication (15 points) | |
tech_score = 0 | |
if "Phase One" in prompt or "Hasselblad" in prompt: | |
tech_score += 5 | |
if any(aperture in prompt for aperture in ["f/1.4", "f/2.8", "f/4"]): | |
tech_score += 5 | |
if any(lens in prompt for lens in ["85mm", "90mm", "80mm"]): | |
tech_score += 5 | |
score += tech_score | |
breakdown["technical"] = tech_score | |
# Environmental Context (10 points) | |
env_score = 0 | |
if ultra_analysis["environmental"]["setting_type"]: | |
env_score += 5 | |
if ultra_analysis["environmental"]["lighting_analysis"]: | |
env_score += 5 | |
score += env_score | |
breakdown["environmental"] = env_score | |
return min(score, 100), breakdown |