Spaces:
Running
on
Zero
Running
on
Zero
Create analyzer.py
Browse files- analyzer.py +378 -0
analyzer.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Ultra Supreme Analyzer for image analysis and prompt building
|
3 |
+
"""
|
4 |
+
|
5 |
+
import re
|
6 |
+
from typing import Dict, List, Any, Tuple
|
7 |
+
|
8 |
+
from constants import (
|
9 |
+
FORBIDDEN_ELEMENTS,
|
10 |
+
MICRO_AGE_INDICATORS,
|
11 |
+
ULTRA_FACIAL_ANALYSIS,
|
12 |
+
EMOTION_MICRO_EXPRESSIONS,
|
13 |
+
CULTURAL_RELIGIOUS_ULTRA,
|
14 |
+
CLOTHING_ACCESSORIES_ULTRA,
|
15 |
+
ENVIRONMENTAL_ULTRA_ANALYSIS,
|
16 |
+
POSE_BODY_LANGUAGE_ULTRA,
|
17 |
+
COMPOSITION_PHOTOGRAPHY_ULTRA,
|
18 |
+
TECHNICAL_PHOTOGRAPHY_ULTRA,
|
19 |
+
QUALITY_DESCRIPTORS_ULTRA,
|
20 |
+
GENDER_INDICATORS
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
class UltraSupremeAnalyzer:
|
25 |
+
"""
|
26 |
+
ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self):
|
30 |
+
self.forbidden_elements = FORBIDDEN_ELEMENTS
|
31 |
+
self.micro_age_indicators = MICRO_AGE_INDICATORS
|
32 |
+
self.ultra_facial_analysis = ULTRA_FACIAL_ANALYSIS
|
33 |
+
self.emotion_micro_expressions = EMOTION_MICRO_EXPRESSIONS
|
34 |
+
self.cultural_religious_ultra = CULTURAL_RELIGIOUS_ULTRA
|
35 |
+
self.clothing_accessories_ultra = CLOTHING_ACCESSORIES_ULTRA
|
36 |
+
self.environmental_ultra_analysis = ENVIRONMENTAL_ULTRA_ANALYSIS
|
37 |
+
self.pose_body_language_ultra = POSE_BODY_LANGUAGE_ULTRA
|
38 |
+
self.composition_photography_ultra = COMPOSITION_PHOTOGRAPHY_ULTRA
|
39 |
+
self.technical_photography_ultra = TECHNICAL_PHOTOGRAPHY_ULTRA
|
40 |
+
self.quality_descriptors_ultra = QUALITY_DESCRIPTORS_ULTRA
|
41 |
+
|
42 |
+
def ultra_supreme_analysis(self, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]:
|
43 |
+
"""ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE"""
|
44 |
+
|
45 |
+
combined_analysis = {
|
46 |
+
"fast": clip_fast.lower(),
|
47 |
+
"classic": clip_classic.lower(),
|
48 |
+
"best": clip_best.lower(),
|
49 |
+
"combined": f"{clip_fast} {clip_classic} {clip_best}".lower()
|
50 |
+
}
|
51 |
+
|
52 |
+
ultra_result = {
|
53 |
+
"demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []},
|
54 |
+
"facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []},
|
55 |
+
"emotional_state": {"primary_emotion": None, "emotion_confidence": 0, "micro_expressions": [], "overall_demeanor": []},
|
56 |
+
"clothing_accessories": {"headwear": [], "eyewear": [], "clothing": [], "accessories": []},
|
57 |
+
"environmental": {"setting_type": None, "specific_location": None, "lighting_analysis": [], "atmosphere": []},
|
58 |
+
"pose_composition": {"body_language": [], "head_position": [], "eye_contact": [], "posture": []},
|
59 |
+
"technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}},
|
60 |
+
"intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0}
|
61 |
+
}
|
62 |
+
|
63 |
+
# ULTRA DEEP AGE ANALYSIS
|
64 |
+
age_scores = {}
|
65 |
+
for age_category, indicators in self.micro_age_indicators.items():
|
66 |
+
score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"])
|
67 |
+
if score > 0:
|
68 |
+
age_scores[age_category] = score
|
69 |
+
|
70 |
+
if age_scores:
|
71 |
+
ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get)
|
72 |
+
ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]]
|
73 |
+
|
74 |
+
# GENDER DETECTION WITH CONFIDENCE
|
75 |
+
male_score = sum(1 for indicator in GENDER_INDICATORS["male"] if indicator in combined_analysis["combined"])
|
76 |
+
female_score = sum(1 for indicator in GENDER_INDICATORS["female"] if indicator in combined_analysis["combined"])
|
77 |
+
|
78 |
+
if male_score > female_score:
|
79 |
+
ultra_result["demographic"]["gender"] = "man"
|
80 |
+
elif female_score > male_score:
|
81 |
+
ultra_result["demographic"]["gender"] = "woman"
|
82 |
+
|
83 |
+
# ULTRA CULTURAL/RELIGIOUS ANALYSIS
|
84 |
+
for culture_type, indicators in self.cultural_religious_ultra.items():
|
85 |
+
if isinstance(indicators, list):
|
86 |
+
for indicator in indicators:
|
87 |
+
if indicator.lower() in combined_analysis["combined"]:
|
88 |
+
ultra_result["demographic"]["cultural_religious"].append(indicator)
|
89 |
+
|
90 |
+
# COMPREHENSIVE FACIAL FEATURE ANALYSIS
|
91 |
+
for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items():
|
92 |
+
for feature in features:
|
93 |
+
if feature in combined_analysis["combined"]:
|
94 |
+
ultra_result["facial_ultra"]["facial_hair"].append(feature)
|
95 |
+
|
96 |
+
# Eyes analysis
|
97 |
+
for eye_category, features in self.ultra_facial_analysis["eye_features"].items():
|
98 |
+
for feature in features:
|
99 |
+
if feature in combined_analysis["combined"]:
|
100 |
+
ultra_result["facial_ultra"]["eyes"].append(feature)
|
101 |
+
|
102 |
+
# EMOTION AND MICRO-EXPRESSION ANALYSIS
|
103 |
+
emotion_scores = {}
|
104 |
+
for emotion in self.emotion_micro_expressions["complex_emotions"]:
|
105 |
+
if emotion in combined_analysis["combined"]:
|
106 |
+
emotion_scores[emotion] = combined_analysis["combined"].count(emotion)
|
107 |
+
|
108 |
+
if emotion_scores:
|
109 |
+
ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get)
|
110 |
+
ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]]
|
111 |
+
|
112 |
+
# CLOTHING AND ACCESSORIES ANALYSIS
|
113 |
+
for category, items in self.clothing_accessories_ultra.items():
|
114 |
+
if isinstance(items, list):
|
115 |
+
for item in items:
|
116 |
+
if item in combined_analysis["combined"]:
|
117 |
+
if category == "clothing_types":
|
118 |
+
ultra_result["clothing_accessories"]["clothing"].append(item)
|
119 |
+
elif category == "clothing_styles":
|
120 |
+
ultra_result["clothing_accessories"]["clothing"].append(item)
|
121 |
+
elif category in ["headwear", "eyewear", "accessories"]:
|
122 |
+
ultra_result["clothing_accessories"][category].append(item)
|
123 |
+
|
124 |
+
# ENVIRONMENTAL ULTRA ANALYSIS
|
125 |
+
setting_scores = {}
|
126 |
+
for main_setting, sub_settings in self.environmental_ultra_analysis.items():
|
127 |
+
if isinstance(sub_settings, dict):
|
128 |
+
for sub_type, locations in sub_settings.items():
|
129 |
+
score = sum(1 for location in locations if location in combined_analysis["combined"])
|
130 |
+
if score > 0:
|
131 |
+
setting_scores[sub_type] = score
|
132 |
+
|
133 |
+
if setting_scores:
|
134 |
+
ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get)
|
135 |
+
|
136 |
+
# LIGHTING ANALYSIS
|
137 |
+
for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items():
|
138 |
+
for light_type in light_types:
|
139 |
+
if light_type in combined_analysis["combined"]:
|
140 |
+
ultra_result["environmental"]["lighting_analysis"].append(light_type)
|
141 |
+
|
142 |
+
# POSE AND BODY LANGUAGE ANALYSIS
|
143 |
+
for pose_category, indicators in self.pose_body_language_ultra.items():
|
144 |
+
for indicator in indicators:
|
145 |
+
if indicator in combined_analysis["combined"]:
|
146 |
+
if pose_category in ultra_result["pose_composition"]:
|
147 |
+
ultra_result["pose_composition"][pose_category].append(indicator)
|
148 |
+
|
149 |
+
# TECHNICAL PHOTOGRAPHY ANALYSIS
|
150 |
+
for shot_type in self.composition_photography_ultra["shot_types"]:
|
151 |
+
if shot_type in combined_analysis["combined"]:
|
152 |
+
ultra_result["technical_analysis"]["shot_type"] = shot_type
|
153 |
+
break
|
154 |
+
|
155 |
+
# CALCULATE INTELLIGENCE METRICS
|
156 |
+
total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0)
|
157 |
+
for category in ultra_result.values()
|
158 |
+
if isinstance(category, dict)
|
159 |
+
for v in category.values())
|
160 |
+
ultra_result["intelligence_metrics"]["total_features_detected"] = total_features
|
161 |
+
ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100)
|
162 |
+
ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
|
163 |
+
|
164 |
+
return ultra_result
|
165 |
+
|
166 |
+
def build_ultra_supreme_prompt(self, ultra_analysis: Dict[str, Any], clip_results: List[str]) -> str:
|
167 |
+
"""BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
|
168 |
+
|
169 |
+
components = []
|
170 |
+
|
171 |
+
# 1. ULTRA INTELLIGENT ARTICLE SELECTION
|
172 |
+
subject_desc = []
|
173 |
+
if ultra_analysis["demographic"]["cultural_religious"]:
|
174 |
+
subject_desc.extend(ultra_analysis["demographic"]["cultural_religious"][:1])
|
175 |
+
if ultra_analysis["demographic"]["age_category"] and ultra_analysis["demographic"]["age_category"] != "middle_aged":
|
176 |
+
subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
|
177 |
+
if ultra_analysis["demographic"]["gender"]:
|
178 |
+
subject_desc.append(ultra_analysis["demographic"]["gender"])
|
179 |
+
|
180 |
+
if subject_desc:
|
181 |
+
full_subject = " ".join(subject_desc)
|
182 |
+
article = "An" if full_subject[0].lower() in 'aeiou' else "A"
|
183 |
+
else:
|
184 |
+
article = "A"
|
185 |
+
components.append(article)
|
186 |
+
|
187 |
+
# 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
|
188 |
+
adjectives = []
|
189 |
+
|
190 |
+
# Age-based adjectives
|
191 |
+
age_cat = ultra_analysis["demographic"]["age_category"]
|
192 |
+
if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
|
193 |
+
adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
|
194 |
+
|
195 |
+
# Emotion-based adjectives
|
196 |
+
emotion = ultra_analysis["emotional_state"]["primary_emotion"]
|
197 |
+
if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
|
198 |
+
adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
|
199 |
+
|
200 |
+
# Default if none found
|
201 |
+
if not adjectives:
|
202 |
+
adjectives = ["distinguished", "professional"]
|
203 |
+
|
204 |
+
components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
|
205 |
+
|
206 |
+
# 3. ULTRA ENHANCED SUBJECT
|
207 |
+
if subject_desc:
|
208 |
+
components.append(" ".join(subject_desc))
|
209 |
+
else:
|
210 |
+
components.append("person")
|
211 |
+
|
212 |
+
# 4. ULTRA DETAILED FACIAL FEATURES
|
213 |
+
facial_details = []
|
214 |
+
|
215 |
+
# Eyes
|
216 |
+
if ultra_analysis["facial_ultra"]["eyes"]:
|
217 |
+
eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
|
218 |
+
facial_details.append(f"with {eye_desc}")
|
219 |
+
|
220 |
+
# Facial hair with ultra detail
|
221 |
+
if ultra_analysis["facial_ultra"]["facial_hair"]:
|
222 |
+
beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
|
223 |
+
if any("silver" in detail or "gray" in detail or "grey" in detail for detail in beard_details):
|
224 |
+
facial_details.append("with a distinguished silver beard")
|
225 |
+
elif any("beard" in detail for detail in beard_details):
|
226 |
+
facial_details.append("with a full well-groomed beard")
|
227 |
+
|
228 |
+
if facial_details:
|
229 |
+
components.extend(facial_details)
|
230 |
+
|
231 |
+
# 5. CLOTHING AND ACCESSORIES ULTRA
|
232 |
+
clothing_details = []
|
233 |
+
|
234 |
+
# Eyewear
|
235 |
+
if ultra_analysis["clothing_accessories"]["eyewear"]:
|
236 |
+
eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
|
237 |
+
clothing_details.append(f"wearing {eyewear}")
|
238 |
+
|
239 |
+
# Headwear
|
240 |
+
if ultra_analysis["clothing_accessories"]["headwear"]:
|
241 |
+
headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
|
242 |
+
if ultra_analysis["demographic"]["cultural_religious"]:
|
243 |
+
clothing_details.append("wearing a traditional black hat")
|
244 |
+
else:
|
245 |
+
clothing_details.append(f"wearing a {headwear}")
|
246 |
+
|
247 |
+
if clothing_details:
|
248 |
+
components.extend(clothing_details)
|
249 |
+
|
250 |
+
# 6. ULTRA POSE AND BODY LANGUAGE
|
251 |
+
pose_description = "positioned with natural dignity"
|
252 |
+
|
253 |
+
if ultra_analysis["pose_composition"]["posture"]:
|
254 |
+
posture = ultra_analysis["pose_composition"]["posture"][0]
|
255 |
+
pose_description = f"maintaining {posture}"
|
256 |
+
elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
|
257 |
+
pose_description = "captured in contemplative portrait pose"
|
258 |
+
|
259 |
+
components.append(pose_description)
|
260 |
+
|
261 |
+
# 7. ULTRA ENVIRONMENTAL CONTEXT
|
262 |
+
environment_desc = "in a thoughtfully composed environment"
|
263 |
+
|
264 |
+
if ultra_analysis["environmental"]["setting_type"]:
|
265 |
+
setting_map = {
|
266 |
+
"residential": "in an intimate home setting",
|
267 |
+
"office": "in a professional office environment",
|
268 |
+
"religious": "in a sacred traditional space",
|
269 |
+
"formal": "in a distinguished formal setting"
|
270 |
+
}
|
271 |
+
environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"],
|
272 |
+
"in a carefully arranged professional setting")
|
273 |
+
|
274 |
+
components.append(environment_desc)
|
275 |
+
|
276 |
+
# 8. ULTRA SOPHISTICATED LIGHTING
|
277 |
+
lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
|
278 |
+
|
279 |
+
if ultra_analysis["environmental"]["lighting_analysis"]:
|
280 |
+
primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
|
281 |
+
if "dramatic" in primary_light:
|
282 |
+
lighting_desc = "bathed in dramatic chiaroscuro lighting that creates compelling depth and shadow play"
|
283 |
+
elif "natural" in primary_light or "window" in primary_light:
|
284 |
+
lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
|
285 |
+
elif "soft" in primary_light:
|
286 |
+
lighting_desc = "softly illuminated to reveal nuanced expressions and character"
|
287 |
+
|
288 |
+
components.append(lighting_desc)
|
289 |
+
|
290 |
+
# 9. ULTRA TECHNICAL SPECIFICATIONS
|
291 |
+
if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
|
292 |
+
camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
|
293 |
+
elif ultra_analysis["demographic"]["cultural_religious"]:
|
294 |
+
camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture"
|
295 |
+
else:
|
296 |
+
camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
|
297 |
+
|
298 |
+
components.append(camera_setup)
|
299 |
+
|
300 |
+
# 10. ULTRA QUALITY DESIGNATION
|
301 |
+
quality_designation = "professional portrait photography"
|
302 |
+
|
303 |
+
if ultra_analysis["demographic"]["cultural_religious"]:
|
304 |
+
quality_designation = "fine art documentary photography"
|
305 |
+
elif ultra_analysis["emotional_state"]["primary_emotion"]:
|
306 |
+
quality_designation = "expressive portrait photography"
|
307 |
+
|
308 |
+
components.append(quality_designation)
|
309 |
+
|
310 |
+
# ULTRA FINAL ASSEMBLY
|
311 |
+
prompt = ", ".join(components)
|
312 |
+
|
313 |
+
# Ultra cleaning and optimization
|
314 |
+
prompt = re.sub(r'\s+', ' ', prompt)
|
315 |
+
prompt = re.sub(r',\s*,+', ',', prompt)
|
316 |
+
prompt = re.sub(r'\s*,\s*', ', ', prompt)
|
317 |
+
prompt = prompt.replace(" ,", ",")
|
318 |
+
|
319 |
+
if prompt:
|
320 |
+
prompt = prompt[0].upper() + prompt[1:]
|
321 |
+
|
322 |
+
return prompt
|
323 |
+
|
324 |
+
def calculate_ultra_supreme_score(self, prompt: str, ultra_analysis: Dict[str, Any]) -> Tuple[int, Dict[str, int]]:
|
325 |
+
"""ULTRA SUPREME INTELLIGENCE SCORING"""
|
326 |
+
|
327 |
+
score = 0
|
328 |
+
breakdown = {}
|
329 |
+
|
330 |
+
# Structure Excellence (15 points)
|
331 |
+
structure_score = 0
|
332 |
+
if prompt.startswith(("A", "An")):
|
333 |
+
structure_score += 5
|
334 |
+
if prompt.count(",") >= 8:
|
335 |
+
structure_score += 10
|
336 |
+
score += structure_score
|
337 |
+
breakdown["structure"] = structure_score
|
338 |
+
|
339 |
+
# Feature Detection Depth (25 points)
|
340 |
+
features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25)
|
341 |
+
score += features_score
|
342 |
+
breakdown["features"] = features_score
|
343 |
+
|
344 |
+
# Cultural/Religious Awareness (20 points)
|
345 |
+
cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20)
|
346 |
+
score += cultural_score
|
347 |
+
breakdown["cultural"] = cultural_score
|
348 |
+
|
349 |
+
# Emotional Intelligence (15 points)
|
350 |
+
emotion_score = 0
|
351 |
+
if ultra_analysis["emotional_state"]["primary_emotion"]:
|
352 |
+
emotion_score += 10
|
353 |
+
if ultra_analysis["emotional_state"]["emotion_confidence"] > 1:
|
354 |
+
emotion_score += 5
|
355 |
+
score += emotion_score
|
356 |
+
breakdown["emotional"] = emotion_score
|
357 |
+
|
358 |
+
# Technical Sophistication (15 points)
|
359 |
+
tech_score = 0
|
360 |
+
if "Phase One" in prompt or "Hasselblad" in prompt:
|
361 |
+
tech_score += 5
|
362 |
+
if any(aperture in prompt for aperture in ["f/1.4", "f/2.8", "f/4"]):
|
363 |
+
tech_score += 5
|
364 |
+
if any(lens in prompt for lens in ["85mm", "90mm", "80mm"]):
|
365 |
+
tech_score += 5
|
366 |
+
score += tech_score
|
367 |
+
breakdown["technical"] = tech_score
|
368 |
+
|
369 |
+
# Environmental Context (10 points)
|
370 |
+
env_score = 0
|
371 |
+
if ultra_analysis["environmental"]["setting_type"]:
|
372 |
+
env_score += 5
|
373 |
+
if ultra_analysis["environmental"]["lighting_analysis"]:
|
374 |
+
env_score += 5
|
375 |
+
score += env_score
|
376 |
+
breakdown["environmental"] = env_score
|
377 |
+
|
378 |
+
return min(score, 100), breakdown
|