Phramer_AI / app.py
Malaji71's picture
Update app.py
ce98582 verified
raw
history blame
21.5 kB
import spaces
import gradio as gr
import torch
from PIL import Image
import numpy as np
from clip_interrogator import Config, Interrogator
import logging
import os
import warnings
from datetime import datetime
import gc
import re
# Suppress warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
DEVICE = get_device()
class FluxRulesEngine:
"""
Flux prompt optimization based on Pariente AI research
Implements structured prompt generation following validated rules
"""
def __init__(self):
self.forbidden_elements = ["++", "weights", "white background [en dev]"]
self.structure_order = {
1: "article",
2: "descriptive_adjectives",
3: "main_subject",
4: "verb_action",
5: "context_location",
6: "environmental_details",
7: "materials_textures",
8: "lighting_effects",
9: "technical_specs",
10: "quality_style"
}
self.articles = ["a", "an", "the"]
self.quality_adjectives = [
"majestic", "pristine", "sleek", "elegant", "dramatic",
"cinematic", "professional", "stunning", "refined"
]
self.lighting_types = [
"golden hour", "studio lighting", "dramatic lighting",
"ambient lighting", "natural light", "soft lighting",
"rim lighting", "volumetric lighting"
]
self.technical_specs = [
"Shot on Phase One", "f/2.8 aperture", "50mm lens",
"85mm lens", "35mm lens", "professional photography",
"medium format", "high resolution"
]
self.materials = [
"metallic", "glass", "chrome", "leather", "fabric",
"wood", "concrete", "steel", "ceramic"
]
def extract_subject(self, base_prompt):
"""Extract main subject from CLIP analysis"""
words = base_prompt.lower().split()
# Common subjects to identify
subjects = [
"car", "vehicle", "automobile", "person", "man", "woman",
"building", "house", "landscape", "mountain", "tree",
"flower", "animal", "dog", "cat", "bird"
]
for word in words:
if word in subjects:
return word
# Fallback to first noun-like word
return words[0] if words else "subject"
def detect_setting(self, base_prompt):
"""Detect environmental context"""
prompt_lower = base_prompt.lower()
settings = {
"studio": ["studio", "backdrop", "seamless"],
"outdoor": ["outdoor", "outside", "landscape", "nature"],
"urban": ["city", "street", "urban", "building"],
"coastal": ["beach", "ocean", "coast", "sea"],
"indoor": ["room", "interior", "inside", "home"]
}
for setting, keywords in settings.items():
if any(keyword in prompt_lower for keyword in keywords):
return setting
return "neutral environment"
def optimize_for_flux(self, base_prompt, style_preference="professional"):
"""Apply Flux-specific optimization rules"""
# Clean forbidden elements
cleaned_prompt = base_prompt
for forbidden in self.forbidden_elements:
cleaned_prompt = cleaned_prompt.replace(forbidden, "")
# Extract key elements
subject = self.extract_subject(base_prompt)
setting = self.detect_setting(base_prompt)
# Build structured prompt
components = []
# 1. Article
article = "A" if subject[0] not in 'aeiou' else "An"
components.append(article)
# 2. Descriptive adjectives (max 2-3)
adjectives = np.random.choice(self.quality_adjectives, size=2, replace=False)
components.extend(adjectives)
# 3. Main subject
components.append(subject)
# 4. Verb/Action (gerund form)
if "person" in subject or "man" in subject or "woman" in subject:
action = "standing"
else:
action = "positioned"
components.append(action)
# 5. Context/Location
context_map = {
"studio": "in a professional studio setting",
"outdoor": "in a natural outdoor environment",
"urban": "on an urban street",
"coastal": "along a dramatic coastline",
"indoor": "in an elegant interior space"
}
components.append(context_map.get(setting, "in a carefully composed scene"))
# 6. Environmental details
env_details = ["with subtle atmospheric effects", "surrounded by carefully balanced elements"]
components.append(np.random.choice(env_details))
# 7. Materials/Textures (if applicable)
if any(mat in base_prompt.lower() for mat in ["car", "vehicle", "metal"]):
material = np.random.choice(["with metallic surfaces", "featuring chrome details"])
components.append(material)
# 8. Lighting effects
lighting = np.random.choice(self.lighting_types)
components.append(f"illuminated by {lighting}")
# 9. Technical specs
tech_spec = np.random.choice(self.technical_specs)
components.append(tech_spec)
# 10. Quality/Style
if style_preference == "cinematic":
quality = "cinematic composition"
elif style_preference == "commercial":
quality = "commercial photography quality"
else:
quality = "professional photography"
components.append(quality)
# Join components with proper punctuation
prompt = ", ".join(components)
# Capitalize first letter
prompt = prompt[0].upper() + prompt[1:]
return prompt
def get_optimization_score(self, prompt):
"""Calculate optimization score for Flux compatibility"""
score = 0
max_score = 100
# Structure check (order compliance)
if prompt.startswith(("A", "An", "The")):
score += 15
# Adjective count (optimal 2-3)
adj_count = len([adj for adj in self.quality_adjectives if adj in prompt.lower()])
if 2 <= adj_count <= 3:
score += 15
elif adj_count == 1:
score += 10
# Technical specs presence
if any(spec in prompt for spec in self.technical_specs):
score += 20
# Lighting specification
if any(light in prompt.lower() for light in self.lighting_types):
score += 15
# No forbidden elements
if not any(forbidden in prompt for forbidden in self.forbidden_elements):
score += 15
# Proper punctuation and structure
if "," in prompt and prompt.endswith(("photography", "composition", "quality")):
score += 10
# Length optimization (Flux works best with detailed but not excessive prompts)
word_count = len(prompt.split())
if 15 <= word_count <= 35:
score += 10
elif 10 <= word_count <= 45:
score += 5
return min(score, max_score)
class FluxPromptOptimizer:
def __init__(self):
self.interrogator = None
self.flux_engine = FluxRulesEngine()
self.usage_count = 0
self.device = DEVICE
self.is_initialized = False
def initialize_model(self, progress_callback=None):
if self.is_initialized:
return True
try:
if progress_callback:
progress_callback("Initializing CLIP model...")
config = Config(
clip_model_name="ViT-L-14/openai",
download_cache=True,
chunk_size=2048,
quiet=True,
device=self.device
)
self.interrogator = Interrogator(config)
self.is_initialized = True
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
return True
except Exception as e:
logger.error(f"Initialization error: {e}")
return False
def optimize_image(self, image):
if image is None:
return None
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
if image.mode != 'RGB':
image = image.convert('RGB')
# Optimize image size for processing
max_size = 768 if self.device != "cpu" else 512
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
@spaces.GPU
def generate_optimized_prompt(self, image, style_preference="professional", mode="best", progress_callback=None):
try:
if not self.is_initialized:
if not self.initialize_model(progress_callback):
return "❌ Model initialization failed.", "", 0
if image is None:
return "❌ Please upload an image.", "", 0
self.usage_count += 1
if progress_callback:
progress_callback("Analyzing image content...")
image = self.optimize_image(image)
if image is None:
return "❌ Image processing failed.", "", 0
if progress_callback:
progress_callback("Extracting visual features...")
start_time = datetime.now()
# Get base analysis from CLIP
try:
if mode == "fast":
base_prompt = self.interrogator.interrogate_fast(image)
elif mode == "classic":
base_prompt = self.interrogator.interrogate_classic(image)
else:
base_prompt = self.interrogator.interrogate(image)
except Exception as e:
base_prompt = self.interrogator.interrogate_fast(image)
if progress_callback:
progress_callback("Applying Flux optimization rules...")
# Apply Flux-specific optimization
optimized_prompt = self.flux_engine.optimize_for_flux(base_prompt, style_preference)
# Calculate optimization score
score = self.flux_engine.get_optimization_score(optimized_prompt)
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
# Generate analysis info
gpu_status = "⚑ ZeroGPU" if torch.cuda.is_available() else "πŸ’» CPU"
analysis_info = f"""
**Analysis Complete**
**Processing:** {gpu_status} β€’ {duration:.1f}s β€’ {mode.title()} mode
**Style:** {style_preference.title()} photography
**Optimization Score:** {score}/100
**Generation:** #{self.usage_count}
**Base Analysis:** {base_prompt[:100]}...
**Enhancement:** Applied Flux-specific structure and terminology
"""
return optimized_prompt, analysis_info, score
except Exception as e:
return f"❌ Error: {str(e)}", "Please try with a different image or contact support.", 0
optimizer = FluxPromptOptimizer()
@spaces.GPU
def process_image_with_progress(image, style_preference, mode):
def progress_callback(message):
return message
yield "πŸš€ Initializing Flux Optimizer...", """
**Flux Prompt Optimizer**
Analyzing image with advanced computer vision
Applying research-based optimization rules
Generating Flux-compatible prompt structure
""", 0
prompt, info, score = optimizer.generate_optimized_prompt(image, style_preference, mode, progress_callback)
yield prompt, info, score
def clear_outputs():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return "", "", 0
def create_interface():
# Professional CSS with elegant typography
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
}
.main-header {
text-align: center;
padding: 2rem 0 3rem 0;
background: linear-gradient(135deg, #1e293b 0%, #334155 100%);
color: white;
margin: -2rem -2rem 2rem -2rem;
border-radius: 0 0 24px 24px;
}
.main-title {
font-size: 2.5rem !important;
font-weight: 700 !important;
margin: 0 0 0.5rem 0 !important;
letter-spacing: -0.025em !important;
background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.subtitle {
font-size: 1.125rem !important;
font-weight: 400 !important;
opacity: 0.8 !important;
margin: 0 !important;
}
.section-header {
font-size: 1.25rem !important;
font-weight: 600 !important;
color: #1e293b !important;
margin: 0 0 1rem 0 !important;
padding-bottom: 0.5rem !important;
border-bottom: 2px solid #e2e8f0 !important;
}
.prompt-output {
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
font-size: 14px !important;
line-height: 1.6 !important;
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
border: 1px solid #e2e8f0 !important;
border-radius: 12px !important;
padding: 1.5rem !important;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1) !important;
}
.info-panel {
background: linear-gradient(135deg, #f0f9ff 0%, #e0f2fe 100%) !important;
border: 1px solid #0ea5e9 !important;
border-radius: 12px !important;
padding: 1.25rem !important;
font-size: 0.875rem !important;
line-height: 1.5 !important;
}
.score-display {
text-align: center !important;
padding: 1rem !important;
background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%) !important;
border: 2px solid #22c55e !important;
border-radius: 12px !important;
margin: 1rem 0 !important;
}
.score-number {
font-size: 2rem !important;
font-weight: 700 !important;
color: #16a34a !important;
margin: 0 !important;
}
.score-label {
font-size: 0.875rem !important;
color: #15803d !important;
margin: 0 !important;
text-transform: uppercase !important;
letter-spacing: 0.05em !important;
}
"""
with gr.Blocks(
theme=gr.themes.Soft(),
title="Flux Prompt Optimizer",
css=css
) as interface:
gr.HTML("""
<div class="main-header">
<div class="main-title">⚑ Flux Prompt Optimizer</div>
<div class="subtitle">Advanced prompt generation for Flux models β€’ Research-based optimization</div>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## πŸ“· Image Input", elem_classes=["section-header"])
image_input = gr.Image(
label="Upload your image",
type="pil",
height=320,
show_label=False
)
gr.Markdown("## βš™οΈ Optimization Settings", elem_classes=["section-header"])
style_selector = gr.Dropdown(
choices=["professional", "cinematic", "commercial", "artistic"],
value="professional",
label="Photography Style",
info="Select the target style for prompt optimization"
)
mode_selector = gr.Dropdown(
choices=["fast", "classic", "best"],
value="best",
label="Analysis Mode",
info="Balance between speed and detail"
)
optimize_btn = gr.Button(
"πŸš€ Generate Optimized Prompt",
variant="primary",
size="lg"
)
gr.Markdown("""
### About Flux Optimization
This tool applies research-validated rules for Flux prompt generation:
β€’ **Structured composition** following optimal element order
β€’ **Technical specifications** for professional results
β€’ **Lighting and material** terminology optimization
β€’ **Quality markers** specific to Flux model architecture
""")
with gr.Column(scale=1):
gr.Markdown("## πŸ“ Optimized Prompt", elem_classes=["section-header"])
prompt_output = gr.Textbox(
label="Generated Prompt",
placeholder="Your optimized Flux prompt will appear here...",
lines=6,
max_lines=10,
elem_classes=["prompt-output"],
show_copy_button=True,
show_label=False
)
# Score display
score_output = gr.HTML(
value='<div class="score-display"><div class="score-number">--</div><div class="score-label">Optimization Score</div></div>'
)
info_output = gr.Markdown(
value="",
elem_classes=["info-panel"]
)
with gr.Row():
clear_btn = gr.Button("πŸ—‘οΈ Clear", size="sm")
copy_btn = gr.Button("πŸ“‹ Copy Prompt", size="sm")
gr.Markdown("""
---
### πŸ”¬ Research Foundation
Flux Prompt Optimizer implements validated prompt engineering research for optimal Flux model performance.
The optimization engine applies structured composition rules, technical terminology, and quality markers
specifically calibrated for Flux architecture.
**Developed by Pariente AI** β€’ Advanced AI Research Laboratory
""")
# Event handlers
def update_score_display(score):
color = "#22c55e" if score >= 80 else "#f59e0b" if score >= 60 else "#ef4444"
return f'''
<div class="score-display" style="border-color: {color};">
<div class="score-number" style="color: {color};">{score}</div>
<div class="score-label">Optimization Score</div>
</div>
'''
def copy_prompt_to_clipboard(prompt):
return prompt
optimize_btn.click(
fn=lambda img, style, mode: [
*process_image_with_progress(img, style, mode),
update_score_display(list(process_image_with_progress(img, style, mode))[-1][2])
],
inputs=[image_input, style_selector, mode_selector],
outputs=[prompt_output, info_output, score_output]
)
clear_btn.click(
fn=clear_outputs,
outputs=[prompt_output, info_output, score_output]
)
copy_btn.click(
fn=copy_prompt_to_clipboard,
inputs=[prompt_output],
outputs=[]
)
return interface
if __name__ == "__main__":
logger.info("πŸš€ Starting Flux Prompt Optimizer")
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)