File size: 21,483 Bytes
ce98582
30c8cdc
 
 
 
cf7819d
30c8cdc
 
3f0776a
30c8cdc
3f0776a
ce98582
3f0776a
ce98582
3f0776a
 
 
30c8cdc
cf7819d
30c8cdc
 
3f0776a
 
 
 
ce98582
3f0776a
 
 
 
 
ce98582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30c8cdc
ce98582
30c8cdc
3f0776a
ce98582
30c8cdc
3f0776a
 
30c8cdc
3f0776a
 
 
 
30c8cdc
3f0776a
ce98582
30c8cdc
 
 
 
cf7819d
3f0776a
 
30c8cdc
3f0776a
 
 
 
 
 
 
 
30c8cdc
3f0776a
 
30c8cdc
ce98582
3f0776a
30c8cdc
3f0776a
 
 
 
 
 
 
 
 
 
 
 
ce98582
3f0776a
 
 
 
 
 
cf7819d
ce98582
30c8cdc
3f0776a
 
ce98582
3f0776a
30c8cdc
ce98582
30c8cdc
 
 
3f0776a
ce98582
3f0776a
 
 
ce98582
30c8cdc
3f0776a
ce98582
30c8cdc
3f0776a
30c8cdc
ce98582
3f0776a
 
ce98582
3f0776a
ce98582
cf7819d
ce98582
3f0776a
ce98582
 
 
 
 
 
 
 
 
 
30c8cdc
3f0776a
 
 
ce98582
3f0776a
 
 
 
 
ce98582
 
cf7819d
ce98582
 
3f0776a
ce98582
 
 
 
30c8cdc
ce98582
 
30c8cdc
 
ce98582
30c8cdc
 
ce98582
3f0776a
ce98582
3f0776a
cf7819d
ce98582
3f0776a
 
 
ce98582
 
3f0776a
ce98582
 
 
 
3f0776a
ce98582
 
30c8cdc
3f0776a
 
 
 
ce98582
30c8cdc
 
ce98582
cf7819d
ce98582
 
30c8cdc
ce98582
 
 
 
30c8cdc
ce98582
 
 
 
 
 
 
 
30c8cdc
ce98582
30c8cdc
ce98582
 
 
 
 
30c8cdc
 
ce98582
30c8cdc
ce98582
30c8cdc
ce98582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30c8cdc
 
 
ce98582
 
 
 
 
30c8cdc
cf7819d
ce98582
 
 
 
30c8cdc
 
 
 
ce98582
 
30c8cdc
ce98582
30c8cdc
ce98582
 
30c8cdc
 
ce98582
 
 
 
 
 
 
30c8cdc
 
 
ce98582
 
 
 
30c8cdc
 
ce98582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30c8cdc
 
ce98582
 
30c8cdc
ce98582
 
 
 
30c8cdc
ce98582
 
30c8cdc
 
ce98582
 
 
 
 
 
 
 
 
30c8cdc
 
ce98582
 
30c8cdc
cf7819d
ce98582
 
 
 
 
 
 
 
30c8cdc
 
ce98582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30c8cdc
 
 
3f0776a
ce98582
 
 
 
 
 
 
30c8cdc
 
 
 
 
ce98582
30c8cdc
 
 
 
cf7819d
30c8cdc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import spaces
import gradio as gr
import torch
from PIL import Image
import numpy as np
from clip_interrogator import Config, Interrogator
import logging
import os
import warnings
from datetime import datetime
import gc
import re

# Suppress warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def get_device():
    if torch.cuda.is_available():
        return "cuda"
    elif torch.backends.mps.is_available():
        return "mps"
    else:
        return "cpu"

DEVICE = get_device()

class FluxRulesEngine:
    """
    Flux prompt optimization based on Pariente AI research
    Implements structured prompt generation following validated rules
    """
    
    def __init__(self):
        self.forbidden_elements = ["++", "weights", "white background [en dev]"]
        self.structure_order = {
            1: "article",
            2: "descriptive_adjectives", 
            3: "main_subject",
            4: "verb_action",
            5: "context_location",
            6: "environmental_details",
            7: "materials_textures",
            8: "lighting_effects",
            9: "technical_specs",
            10: "quality_style"
        }
        
        self.articles = ["a", "an", "the"]
        self.quality_adjectives = [
            "majestic", "pristine", "sleek", "elegant", "dramatic", 
            "cinematic", "professional", "stunning", "refined"
        ]
        
        self.lighting_types = [
            "golden hour", "studio lighting", "dramatic lighting",
            "ambient lighting", "natural light", "soft lighting",
            "rim lighting", "volumetric lighting"
        ]
        
        self.technical_specs = [
            "Shot on Phase One", "f/2.8 aperture", "50mm lens",
            "85mm lens", "35mm lens", "professional photography",
            "medium format", "high resolution"
        ]
        
        self.materials = [
            "metallic", "glass", "chrome", "leather", "fabric",
            "wood", "concrete", "steel", "ceramic"
        ]
    
    def extract_subject(self, base_prompt):
        """Extract main subject from CLIP analysis"""
        words = base_prompt.lower().split()
        
        # Common subjects to identify
        subjects = [
            "car", "vehicle", "automobile", "person", "man", "woman", 
            "building", "house", "landscape", "mountain", "tree",
            "flower", "animal", "dog", "cat", "bird"
        ]
        
        for word in words:
            if word in subjects:
                return word
                
        # Fallback to first noun-like word
        return words[0] if words else "subject"
    
    def detect_setting(self, base_prompt):
        """Detect environmental context"""
        prompt_lower = base_prompt.lower()
        
        settings = {
            "studio": ["studio", "backdrop", "seamless"],
            "outdoor": ["outdoor", "outside", "landscape", "nature"],
            "urban": ["city", "street", "urban", "building"],
            "coastal": ["beach", "ocean", "coast", "sea"],
            "indoor": ["room", "interior", "inside", "home"]
        }
        
        for setting, keywords in settings.items():
            if any(keyword in prompt_lower for keyword in keywords):
                return setting
                
        return "neutral environment"
    
    def optimize_for_flux(self, base_prompt, style_preference="professional"):
        """Apply Flux-specific optimization rules"""
        
        # Clean forbidden elements
        cleaned_prompt = base_prompt
        for forbidden in self.forbidden_elements:
            cleaned_prompt = cleaned_prompt.replace(forbidden, "")
        
        # Extract key elements
        subject = self.extract_subject(base_prompt)
        setting = self.detect_setting(base_prompt)
        
        # Build structured prompt
        components = []
        
        # 1. Article
        article = "A" if subject[0] not in 'aeiou' else "An"
        components.append(article)
        
        # 2. Descriptive adjectives (max 2-3)
        adjectives = np.random.choice(self.quality_adjectives, size=2, replace=False)
        components.extend(adjectives)
        
        # 3. Main subject
        components.append(subject)
        
        # 4. Verb/Action (gerund form)
        if "person" in subject or "man" in subject or "woman" in subject:
            action = "standing"
        else:
            action = "positioned"
        components.append(action)
        
        # 5. Context/Location
        context_map = {
            "studio": "in a professional studio setting",
            "outdoor": "in a natural outdoor environment", 
            "urban": "on an urban street",
            "coastal": "along a dramatic coastline",
            "indoor": "in an elegant interior space"
        }
        components.append(context_map.get(setting, "in a carefully composed scene"))
        
        # 6. Environmental details
        env_details = ["with subtle atmospheric effects", "surrounded by carefully balanced elements"]
        components.append(np.random.choice(env_details))
        
        # 7. Materials/Textures (if applicable)
        if any(mat in base_prompt.lower() for mat in ["car", "vehicle", "metal"]):
            material = np.random.choice(["with metallic surfaces", "featuring chrome details"])
            components.append(material)
        
        # 8. Lighting effects
        lighting = np.random.choice(self.lighting_types)
        components.append(f"illuminated by {lighting}")
        
        # 9. Technical specs
        tech_spec = np.random.choice(self.technical_specs)
        components.append(tech_spec)
        
        # 10. Quality/Style
        if style_preference == "cinematic":
            quality = "cinematic composition"
        elif style_preference == "commercial":
            quality = "commercial photography quality"
        else:
            quality = "professional photography"
            
        components.append(quality)
        
        # Join components with proper punctuation
        prompt = ", ".join(components)
        
        # Capitalize first letter
        prompt = prompt[0].upper() + prompt[1:]
        
        return prompt
    
    def get_optimization_score(self, prompt):
        """Calculate optimization score for Flux compatibility"""
        score = 0
        max_score = 100
        
        # Structure check (order compliance)
        if prompt.startswith(("A", "An", "The")):
            score += 15
            
        # Adjective count (optimal 2-3)
        adj_count = len([adj for adj in self.quality_adjectives if adj in prompt.lower()])
        if 2 <= adj_count <= 3:
            score += 15
        elif adj_count == 1:
            score += 10
            
        # Technical specs presence
        if any(spec in prompt for spec in self.technical_specs):
            score += 20
            
        # Lighting specification
        if any(light in prompt.lower() for light in self.lighting_types):
            score += 15
            
        # No forbidden elements
        if not any(forbidden in prompt for forbidden in self.forbidden_elements):
            score += 15
            
        # Proper punctuation and structure
        if "," in prompt and prompt.endswith(("photography", "composition", "quality")):
            score += 10
            
        # Length optimization (Flux works best with detailed but not excessive prompts)
        word_count = len(prompt.split())
        if 15 <= word_count <= 35:
            score += 10
        elif 10 <= word_count <= 45:
            score += 5
            
        return min(score, max_score)

class FluxPromptOptimizer:
    def __init__(self):
        self.interrogator = None
        self.flux_engine = FluxRulesEngine()
        self.usage_count = 0
        self.device = DEVICE
        self.is_initialized = False
    
    def initialize_model(self, progress_callback=None):
        if self.is_initialized:
            return True
            
        try:
            if progress_callback:
                progress_callback("Initializing CLIP model...")
            
            config = Config(
                clip_model_name="ViT-L-14/openai",
                download_cache=True,
                chunk_size=2048,
                quiet=True,
                device=self.device
            )
            
            self.interrogator = Interrogator(config)
            self.is_initialized = True
            
            if self.device == "cpu":
                gc.collect()
            else:
                torch.cuda.empty_cache()
                
            return True
            
        except Exception as e:
            logger.error(f"Initialization error: {e}")
            return False
    
    def optimize_image(self, image):
        if image is None:
            return None
            
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        elif not isinstance(image, Image.Image):
            image = Image.open(image)
        
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        # Optimize image size for processing
        max_size = 768 if self.device != "cpu" else 512
        if image.size[0] > max_size or image.size[1] > max_size:
            image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
        
        return image
    
    @spaces.GPU
    def generate_optimized_prompt(self, image, style_preference="professional", mode="best", progress_callback=None):
        try:
            if not self.is_initialized:
                if not self.initialize_model(progress_callback):
                    return "❌ Model initialization failed.", "", 0
            
            if image is None:
                return "❌ Please upload an image.", "", 0
            
            self.usage_count += 1
            
            if progress_callback:
                progress_callback("Analyzing image content...")
            
            image = self.optimize_image(image)
            if image is None:
                return "❌ Image processing failed.", "", 0
            
            if progress_callback:
                progress_callback("Extracting visual features...")
            
            start_time = datetime.now()
            
            # Get base analysis from CLIP
            try:
                if mode == "fast":
                    base_prompt = self.interrogator.interrogate_fast(image)
                elif mode == "classic":
                    base_prompt = self.interrogator.interrogate_classic(image)
                else:
                    base_prompt = self.interrogator.interrogate(image)
            except Exception as e:
                base_prompt = self.interrogator.interrogate_fast(image)
            
            if progress_callback:
                progress_callback("Applying Flux optimization rules...")
            
            # Apply Flux-specific optimization
            optimized_prompt = self.flux_engine.optimize_for_flux(base_prompt, style_preference)
            
            # Calculate optimization score
            score = self.flux_engine.get_optimization_score(optimized_prompt)
            
            end_time = datetime.now()
            duration = (end_time - start_time).total_seconds()
            
            # Memory cleanup
            if self.device == "cpu":
                gc.collect()
            else:
                torch.cuda.empty_cache()
            
            # Generate analysis info
            gpu_status = "⚑ ZeroGPU" if torch.cuda.is_available() else "πŸ’» CPU"
            
            analysis_info = f"""
**Analysis Complete**

**Processing:** {gpu_status} β€’ {duration:.1f}s β€’ {mode.title()} mode  
**Style:** {style_preference.title()} photography  
**Optimization Score:** {score}/100  
**Generation:** #{self.usage_count}  

**Base Analysis:** {base_prompt[:100]}...  
**Enhancement:** Applied Flux-specific structure and terminology  
"""
            
            return optimized_prompt, analysis_info, score
            
        except Exception as e:
            return f"❌ Error: {str(e)}", "Please try with a different image or contact support.", 0

optimizer = FluxPromptOptimizer()

@spaces.GPU  
def process_image_with_progress(image, style_preference, mode):
    def progress_callback(message):
        return message
    
    yield "πŸš€ Initializing Flux Optimizer...", """
**Flux Prompt Optimizer**

Analyzing image with advanced computer vision  
Applying research-based optimization rules  
Generating Flux-compatible prompt structure  
""", 0
    
    prompt, info, score = optimizer.generate_optimized_prompt(image, style_preference, mode, progress_callback)
    yield prompt, info, score

def clear_outputs():
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    return "", "", 0

def create_interface():
    # Professional CSS with elegant typography
    css = """
    @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
    
    .gradio-container {
        max-width: 1200px !important;
        margin: 0 auto !important;
        font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
        background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
    }
    
    .main-header {
        text-align: center;
        padding: 2rem 0 3rem 0;
        background: linear-gradient(135deg, #1e293b 0%, #334155 100%);
        color: white;
        margin: -2rem -2rem 2rem -2rem;
        border-radius: 0 0 24px 24px;
    }
    
    .main-title {
        font-size: 2.5rem !important;
        font-weight: 700 !important;
        margin: 0 0 0.5rem 0 !important;
        letter-spacing: -0.025em !important;
        background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 100%);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        background-clip: text;
    }
    
    .subtitle {
        font-size: 1.125rem !important;
        font-weight: 400 !important;
        opacity: 0.8 !important;
        margin: 0 !important;
    }
    
    .section-header {
        font-size: 1.25rem !important;
        font-weight: 600 !important;
        color: #1e293b !important;
        margin: 0 0 1rem 0 !important;
        padding-bottom: 0.5rem !important;
        border-bottom: 2px solid #e2e8f0 !important;
    }
    
    .prompt-output {
        font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
        font-size: 14px !important;
        line-height: 1.6 !important;
        background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
        border: 1px solid #e2e8f0 !important;
        border-radius: 12px !important;
        padding: 1.5rem !important;
        box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1) !important;
    }
    
    .info-panel {
        background: linear-gradient(135deg, #f0f9ff 0%, #e0f2fe 100%) !important;
        border: 1px solid #0ea5e9 !important;
        border-radius: 12px !important;
        padding: 1.25rem !important;
        font-size: 0.875rem !important;
        line-height: 1.5 !important;
    }
    
    .score-display {
        text-align: center !important;
        padding: 1rem !important;
        background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%) !important;
        border: 2px solid #22c55e !important;
        border-radius: 12px !important;
        margin: 1rem 0 !important;
    }
    
    .score-number {
        font-size: 2rem !important;
        font-weight: 700 !important;
        color: #16a34a !important;
        margin: 0 !important;
    }
    
    .score-label {
        font-size: 0.875rem !important;
        color: #15803d !important;
        margin: 0 !important;
        text-transform: uppercase !important;
        letter-spacing: 0.05em !important;
    }
    """
    
    with gr.Blocks(
        theme=gr.themes.Soft(),
        title="Flux Prompt Optimizer",
        css=css
    ) as interface:
        
        gr.HTML("""
        <div class="main-header">
            <div class="main-title">⚑ Flux Prompt Optimizer</div>
            <div class="subtitle">Advanced prompt generation for Flux models β€’ Research-based optimization</div>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("## πŸ“· Image Input", elem_classes=["section-header"])
                
                image_input = gr.Image(
                    label="Upload your image",
                    type="pil",
                    height=320,
                    show_label=False
                )
                
                gr.Markdown("## βš™οΈ Optimization Settings", elem_classes=["section-header"])
                
                style_selector = gr.Dropdown(
                    choices=["professional", "cinematic", "commercial", "artistic"],
                    value="professional",
                    label="Photography Style",
                    info="Select the target style for prompt optimization"
                )
                
                mode_selector = gr.Dropdown(
                    choices=["fast", "classic", "best"],
                    value="best",
                    label="Analysis Mode",
                    info="Balance between speed and detail"
                )
                
                optimize_btn = gr.Button(
                    "πŸš€ Generate Optimized Prompt",
                    variant="primary",
                    size="lg"
                )
                
                gr.Markdown("""
                ### About Flux Optimization
                
                This tool applies research-validated rules for Flux prompt generation:
                
                β€’ **Structured composition** following optimal element order
                β€’ **Technical specifications** for professional results  
                β€’ **Lighting and material** terminology optimization
                β€’ **Quality markers** specific to Flux model architecture
                """)
            
            with gr.Column(scale=1):
                gr.Markdown("## πŸ“ Optimized Prompt", elem_classes=["section-header"])
                
                prompt_output = gr.Textbox(
                    label="Generated Prompt",
                    placeholder="Your optimized Flux prompt will appear here...",
                    lines=6,
                    max_lines=10,
                    elem_classes=["prompt-output"],
                    show_copy_button=True,
                    show_label=False
                )
                
                # Score display
                score_output = gr.HTML(
                    value='<div class="score-display"><div class="score-number">--</div><div class="score-label">Optimization Score</div></div>'
                )
                
                info_output = gr.Markdown(
                    value="",
                    elem_classes=["info-panel"]
                )
                
                with gr.Row():
                    clear_btn = gr.Button("πŸ—‘οΈ Clear", size="sm")
                    copy_btn = gr.Button("πŸ“‹ Copy Prompt", size="sm")
        
        gr.Markdown("""
        ---
        ### πŸ”¬ Research Foundation
        
        Flux Prompt Optimizer implements validated prompt engineering research for optimal Flux model performance. 
        The optimization engine applies structured composition rules, technical terminology, and quality markers 
        specifically calibrated for Flux architecture.
        
        **Developed by Pariente AI** β€’ Advanced AI Research Laboratory
        """)
        
        # Event handlers
        def update_score_display(score):
            color = "#22c55e" if score >= 80 else "#f59e0b" if score >= 60 else "#ef4444"
            return f'''
            <div class="score-display" style="border-color: {color};">
                <div class="score-number" style="color: {color};">{score}</div>
                <div class="score-label">Optimization Score</div>
            </div>
            '''
        
        def copy_prompt_to_clipboard(prompt):
            return prompt
        
        optimize_btn.click(
            fn=lambda img, style, mode: [
                *process_image_with_progress(img, style, mode),
                update_score_display(list(process_image_with_progress(img, style, mode))[-1][2])
            ],
            inputs=[image_input, style_selector, mode_selector],
            outputs=[prompt_output, info_output, score_output]
        )
        
        clear_btn.click(
            fn=clear_outputs,
            outputs=[prompt_output, info_output, score_output]
        )
        
        copy_btn.click(
            fn=copy_prompt_to_clipboard,
            inputs=[prompt_output],
            outputs=[]
        )
    
    return interface

if __name__ == "__main__":
    logger.info("πŸš€ Starting Flux Prompt Optimizer")
    interface = create_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )