Phramer_AI / processor.py
Malaji71's picture
Update processor.py
3fe3e93 verified
raw
history blame
21 kB
"""
Main processing logic for Phramer AI
By Pariente AI, for MIA TV Series
Enhanced image analysis with professional cinematography integration and multi-engine optimization
"""
import logging
import time
from typing import Tuple, Dict, Any, Optional
from PIL import Image
from datetime import datetime
from config import APP_CONFIG, PROCESSING_CONFIG, get_device_config, PROFESSIONAL_PHOTOGRAPHY_CONFIG
from utils import (
optimize_image, validate_image, apply_flux_rules,
calculate_prompt_score, get_score_grade, format_analysis_report,
clean_memory, safe_execute, detect_scene_type_from_analysis,
enhance_prompt_with_cinematography_knowledge
)
from models import analyze_image
logger = logging.getLogger(__name__)
class PhramerlAIOptimizer:
"""Main optimizer class for Phramer AI prompt generation with cinematography integration"""
def __init__(self, model_name: str = None):
self.model_name = model_name
self.device_config = get_device_config()
self.processing_stats = {
"total_processed": 0,
"successful_analyses": 0,
"failed_analyses": 0,
"average_processing_time": 0.0,
"cinematography_enhancements": 0,
"scene_types_detected": {}
}
logger.info(f"Phramer AI Optimizer initialized - Device: {self.device_config['device']}")
def process_image(self, image: Any, analysis_type: str = "multiengine") -> Tuple[str, str, str, Dict[str, Any]]:
"""
Complete image processing pipeline with cinematography enhancement
Args:
image: Input image (PIL, numpy array, or file path)
analysis_type: Type of analysis ("multiengine", "cinematic", "flux")
Returns:
Tuple of (optimized_prompt, analysis_report, score_html, metadata)
"""
start_time = time.time()
metadata = {
"processing_time": 0.0,
"success": False,
"model_used": self.model_name or "bagel-professional",
"device": self.device_config["device"],
"analysis_type": analysis_type,
"cinematography_enhanced": False,
"scene_type": "unknown",
"error": None
}
try:
# Step 1: Validate and optimize input image
logger.info(f"Starting Phramer AI processing pipeline - Analysis type: {analysis_type}")
if not validate_image(image):
error_msg = "Invalid or unsupported image format"
logger.error(error_msg)
return self._create_error_response(error_msg, metadata)
optimized_image = optimize_image(image)
if optimized_image is None:
error_msg = "Image optimization failed"
logger.error(error_msg)
return self._create_error_response(error_msg, metadata)
logger.info(f"Image optimized to size: {optimized_image.size}")
# Step 2: Enhanced image analysis with cinematography context
logger.info("Running enhanced BAGEL analysis with cinematography integration...")
analysis_success, analysis_result = safe_execute(
analyze_image,
optimized_image,
self.model_name,
analysis_type
)
if not analysis_success:
error_msg = f"Enhanced image analysis failed: {analysis_result}"
logger.error(error_msg)
return self._create_error_response(error_msg, metadata)
description, analysis_metadata = analysis_result
logger.info(f"Enhanced analysis complete: {len(description)} characters")
# Step 3: Detect scene type and apply cinematography enhancements
scene_type = detect_scene_type_from_analysis(analysis_metadata)
metadata["scene_type"] = scene_type
# Update scene statistics
if scene_type in self.processing_stats["scene_types_detected"]:
self.processing_stats["scene_types_detected"][scene_type] += 1
else:
self.processing_stats["scene_types_detected"][scene_type] = 1
logger.info(f"Scene type detected: {scene_type}")
# Step 4: Apply enhanced FLUX optimization with cinematography knowledge
logger.info("Applying enhanced multi-engine optimization...")
optimized_prompt = apply_flux_rules(description, analysis_metadata)
# Step 5: Additional cinematography enhancement if enabled
if PROFESSIONAL_PHOTOGRAPHY_CONFIG.get("enable_expert_analysis", True):
logger.info("Applying professional cinematography enhancement...")
optimized_prompt = enhance_prompt_with_cinematography_knowledge(optimized_prompt, scene_type)
metadata["cinematography_enhanced"] = True
self.processing_stats["cinematography_enhancements"] += 1
if not optimized_prompt:
optimized_prompt = "A professional cinematic photograph with technical excellence"
logger.warning("Empty prompt after optimization, using cinematography fallback")
# Step 6: Calculate enhanced quality score
logger.info("Calculating professional quality score...")
score, score_breakdown = calculate_prompt_score(optimized_prompt, analysis_metadata)
grade_info = get_score_grade(score)
# Step 7: Generate comprehensive analysis report
processing_time = time.time() - start_time
metadata.update({
"processing_time": processing_time,
"success": True,
"prompt_length": len(optimized_prompt),
"score": score,
"grade": grade_info["grade"],
"analysis_metadata": analysis_metadata,
"score_breakdown": score_breakdown,
"has_camera_suggestion": analysis_metadata.get("has_camera_suggestion", False),
"professional_enhancement": analysis_metadata.get("professional_enhancement", False)
})
analysis_report = self._generate_enhanced_report(
optimized_prompt, analysis_metadata, score,
score_breakdown, processing_time, scene_type
)
# Step 8: Create enhanced score HTML
score_html = self._generate_enhanced_score_html(score, grade_info, scene_type)
# Update statistics
self._update_stats(processing_time, True)
logger.info(f"Phramer AI processing complete - Scene: {scene_type}, Score: {score}, Time: {processing_time:.1f}s")
return optimized_prompt, analysis_report, score_html, metadata
except Exception as e:
processing_time = time.time() - start_time
error_msg = f"Unexpected error in Phramer AI pipeline: {str(e)}"
logger.error(error_msg, exc_info=True)
metadata.update({
"processing_time": processing_time,
"error": error_msg
})
self._update_stats(processing_time, False)
return self._create_error_response(error_msg, metadata)
finally:
# Always clean up memory
clean_memory()
def process_for_cinematic(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
"""Process image specifically for cinematic/MIA TV Series production"""
return self.process_image(image, analysis_type="cinematic")
def process_for_flux(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
"""Process image specifically for FLUX generation"""
return self.process_image(image, analysis_type="flux")
def process_for_multiengine(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
"""Process image for multi-engine compatibility (Flux, Midjourney, etc.)"""
return self.process_image(image, analysis_type="multiengine")
def _create_error_response(self, error_msg: str, metadata: Dict[str, Any]) -> Tuple[str, str, str, Dict[str, Any]]:
"""Create standardized error response"""
error_prompt = "❌ Phramer AI processing failed"
error_report = f"""**Error:** {error_msg}
**Troubleshooting:**
• Verify image format (JPG, PNG, WebP)
• Check image size (max 1024px)
• Ensure stable internet connection
• Try with a different image
**Support:** Contact Pariente AI technical team"""
error_html = self._generate_enhanced_score_html(0, get_score_grade(0), "error")
metadata["success"] = False
metadata["error"] = error_msg
return error_prompt, error_report, error_html, metadata
def _generate_enhanced_report(self, prompt: str, analysis_metadata: Dict[str, Any],
score: int, breakdown: Dict[str, int],
processing_time: float, scene_type: str) -> str:
"""Generate comprehensive analysis report with cinematography insights"""
model_used = analysis_metadata.get("model", "Unknown")
device_used = analysis_metadata.get("device", self.device_config["device"])
confidence = analysis_metadata.get("confidence", 0.0)
has_cinema_context = analysis_metadata.get("cinematography_context_applied", False)
camera_setup = analysis_metadata.get("camera_setup", "Not detected")
# Device status emoji
device_emoji = "⚡" if device_used == "cuda" else "💻"
cinema_emoji = "🎬" if has_cinema_context else "📸"
report = f"""**{cinema_emoji} PHRAMER AI ANALYSIS COMPLETE**
**Processing:** {device_emoji} {device_used.upper()}{processing_time:.1f}s • Model: {model_used}
**Score:** {score}/100 • Scene: {scene_type.replace('_', ' ').title()} • Confidence: {confidence:.0%}
**🎯 SCORE BREAKDOWN:**
• **Prompt Quality:** {breakdown.get('prompt_quality', 0)}/25 - Content detail and structure
• **Technical Details:** {breakdown.get('technical_details', 0)}/25 - Camera and equipment specs
• **Professional Cinematography:** {breakdown.get('professional_cinematography', 0)}/25 - Cinema expertise applied
• **Multi-Engine Optimization:** {breakdown.get('multi_engine_optimization', 0)}/25 - Platform compatibility
**🎬 CINEMATOGRAPHY ANALYSIS:**
**Scene Type:** {scene_type.replace('_', ' ').title()}
**Camera Setup:** {camera_setup}
**Professional Context:** {'✅ Applied' if has_cinema_context else '❌ Basic'}
**⚙️ OPTIMIZATIONS APPLIED:**
✅ Professional camera configuration
✅ Cinematography lighting principles
✅ Technical specifications enhanced
✅ Multi-engine compatibility (Flux, Midjourney)
✅ Cinema-quality terminology
✅ Scene-specific enhancements
**📊 PERFORMANCE METRICS:**
• **Processing Time:** {processing_time:.1f}s
• **Device:** {device_used.upper()}
• **Model Confidence:** {confidence:.0%}
• **Prompt Length:** {len(prompt)} characters
• **Enhancement Level:** {'Professional' if has_cinema_context else 'Standard'}
**🏆 COMPATIBILITY:**
• **FLUX:** ✅ Optimized
• **Midjourney:** ✅ Compatible
• **Stable Diffusion:** ✅ Ready
• **Other Engines:** ✅ Universal format
**Pariente AI • MIA TV Series • 30+ Years Cinema Experience**"""
return report
def _generate_enhanced_score_html(self, score: int, grade_info: Dict[str, str], scene_type: str) -> str:
"""Generate enhanced HTML for score display with cinematography context"""
# Scene type emoji
scene_emojis = {
"cinematic": "🎬",
"portrait": "👤",
"landscape": "🏔️",
"street": "🏙️",
"architectural": "🏛️",
"commercial": "💼",
"error": "❌"
}
scene_emoji = scene_emojis.get(scene_type, "📸")
html = f'''
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {grade_info["color"]}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
<div style="font-size: 2.5rem; margin-bottom: 0.5rem;">{scene_emoji}</div>
<div style="font-size: 3rem; font-weight: 800; color: {grade_info["color"]}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
<div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade_info["grade"]}</div>
<div style="font-size: 0.9rem; color: #15803d; margin: 0; text-transform: capitalize; letter-spacing: 0.05em; font-weight: 500;">{scene_type.replace('_', ' ')} Scene</div>
<div style="font-size: 0.8rem; color: #15803d; margin: 0.5rem 0 0 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Phramer AI Quality</div>
</div>
'''
return html
def _update_stats(self, processing_time: float, success: bool) -> None:
"""Update processing statistics with cinematography tracking"""
self.processing_stats["total_processed"] += 1
if success:
self.processing_stats["successful_analyses"] += 1
else:
self.processing_stats["failed_analyses"] += 1
# Update rolling average of processing time
current_avg = self.processing_stats["average_processing_time"]
total_count = self.processing_stats["total_processed"]
self.processing_stats["average_processing_time"] = (
(current_avg * (total_count - 1) + processing_time) / total_count
)
def get_enhanced_stats(self) -> Dict[str, Any]:
"""Get enhanced processing statistics with cinematography insights"""
stats = self.processing_stats.copy()
if stats["total_processed"] > 0:
stats["success_rate"] = stats["successful_analyses"] / stats["total_processed"]
stats["cinematography_enhancement_rate"] = stats["cinematography_enhancements"] / stats["total_processed"]
else:
stats["success_rate"] = 0.0
stats["cinematography_enhancement_rate"] = 0.0
stats["device_info"] = self.device_config
stats["most_common_scene"] = max(stats["scene_types_detected"].items(), key=lambda x: x[1])[0] if stats["scene_types_detected"] else "none"
return stats
def reset_stats(self) -> None:
"""Reset processing statistics"""
self.processing_stats = {
"total_processed": 0,
"successful_analyses": 0,
"failed_analyses": 0,
"average_processing_time": 0.0,
"cinematography_enhancements": 0,
"scene_types_detected": {}
}
logger.info("Phramer AI processing statistics reset")
class CinematicBatchProcessor:
"""Handle batch processing for MIA TV Series production"""
def __init__(self, optimizer: PhramerlAIOptimizer):
self.optimizer = optimizer
self.batch_results = []
self.batch_stats = {
"total_images": 0,
"successful_analyses": 0,
"scene_type_distribution": {},
"average_score": 0.0,
"processing_time_total": 0.0
}
def process_cinematic_batch(self, images: list, analysis_type: str = "cinematic") -> list:
"""Process multiple images for cinematic production"""
results = []
total_score = 0
successful_count = 0
logger.info(f"Starting cinematic batch processing: {len(images)} images")
for i, image in enumerate(images):
logger.info(f"Processing cinematic batch item {i+1}/{len(images)}")
try:
if analysis_type == "cinematic":
result = self.optimizer.process_for_cinematic(image)
elif analysis_type == "flux":
result = self.optimizer.process_for_flux(image)
else:
result = self.optimizer.process_for_multiengine(image)
success = result[3]["success"]
if success:
score = result[3].get("score", 0)
scene_type = result[3].get("scene_type", "unknown")
total_score += score
successful_count += 1
# Update scene distribution
if scene_type in self.batch_stats["scene_type_distribution"]:
self.batch_stats["scene_type_distribution"][scene_type] += 1
else:
self.batch_stats["scene_type_distribution"][scene_type] = 1
results.append({
"index": i,
"success": success,
"result": result,
"scene_type": result[3].get("scene_type", "unknown"),
"score": result[3].get("score", 0)
})
except Exception as e:
logger.error(f"Cinematic batch item {i} failed: {e}")
results.append({
"index": i,
"success": False,
"error": str(e),
"scene_type": "error",
"score": 0
})
# Update batch statistics
self.batch_stats.update({
"total_images": len(images),
"successful_analyses": successful_count,
"average_score": total_score / successful_count if successful_count > 0 else 0.0
})
self.batch_results = results
logger.info(f"Cinematic batch processing complete: {successful_count}/{len(images)} successful")
return results
def get_cinematic_batch_summary(self) -> Dict[str, Any]:
"""Get comprehensive summary of cinematic batch processing"""
if not self.batch_results:
return {"total": 0, "successful": 0, "failed": 0, "average_score": 0.0}
successful = sum(1 for r in self.batch_results if r["success"])
total = len(self.batch_results)
summary = {
"total": total,
"successful": successful,
"failed": total - successful,
"success_rate": successful / total if total > 0 else 0.0,
"average_score": self.batch_stats["average_score"],
"scene_distribution": self.batch_stats["scene_type_distribution"],
"most_common_scene": max(self.batch_stats["scene_type_distribution"].items(), key=lambda x: x[1])[0] if self.batch_stats["scene_type_distribution"] else "none"
}
return summary
# Global optimizer instance for Phramer AI
phramer_optimizer = PhramerlAIOptimizer()
def process_image_simple(image: Any, model_name: str = None, analysis_type: str = "multiengine") -> Tuple[str, str, str]:
"""
Simple interface for Phramer AI image processing
Args:
image: Input image
model_name: Optional model name
analysis_type: Type of analysis ("multiengine", "cinematic", "flux")
Returns:
Tuple of (prompt, report, score_html)
"""
if model_name and model_name != phramer_optimizer.model_name:
# Create temporary optimizer with specified model
temp_optimizer = PhramerlAIOptimizer(model_name)
prompt, report, score_html, _ = temp_optimizer.process_image(image, analysis_type)
else:
prompt, report, score_html, _ = phramer_optimizer.process_image(image, analysis_type)
return prompt, report, score_html
def process_for_mia_tv_series(image: Any) -> Tuple[str, str, str]:
"""
Specialized processing for MIA TV Series production
Args:
image: Input image
Returns:
Tuple of (cinematic_prompt, detailed_report, score_html)
"""
return phramer_optimizer.process_for_cinematic(image)[:3]
def get_phramer_stats() -> Dict[str, Any]:
"""Get comprehensive Phramer AI processing statistics"""
return phramer_optimizer.get_enhanced_stats()
# Export main components
__all__ = [
"PhramerlAIOptimizer",
"CinematicBatchProcessor",
"phramer_optimizer",
"process_image_simple",
"process_for_mia_tv_series",
"get_phramer_stats"
]