Spaces:
Running
on
Zero
Running
on
Zero
Update processor.py
Browse files- processor.py +248 -92
processor.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
"""
|
2 |
-
Main processing logic for
|
3 |
-
|
|
|
|
|
4 |
"""
|
5 |
|
6 |
import logging
|
@@ -9,19 +11,20 @@ from typing import Tuple, Dict, Any, Optional
|
|
9 |
from PIL import Image
|
10 |
from datetime import datetime
|
11 |
|
12 |
-
from config import APP_CONFIG, PROCESSING_CONFIG, get_device_config
|
13 |
from utils import (
|
14 |
optimize_image, validate_image, apply_flux_rules,
|
15 |
calculate_prompt_score, get_score_grade, format_analysis_report,
|
16 |
-
clean_memory, safe_execute
|
|
|
17 |
)
|
18 |
from models import analyze_image
|
19 |
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
|
23 |
-
class
|
24 |
-
"""Main optimizer class for
|
25 |
|
26 |
def __init__(self, model_name: str = None):
|
27 |
self.model_name = model_name
|
@@ -30,17 +33,20 @@ class FluxOptimizer:
|
|
30 |
"total_processed": 0,
|
31 |
"successful_analyses": 0,
|
32 |
"failed_analyses": 0,
|
33 |
-
"average_processing_time": 0.0
|
|
|
|
|
34 |
}
|
35 |
|
36 |
-
logger.info(f"
|
37 |
|
38 |
-
def process_image(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
|
39 |
"""
|
40 |
-
Complete image processing pipeline
|
41 |
|
42 |
Args:
|
43 |
image: Input image (PIL, numpy array, or file path)
|
|
|
44 |
|
45 |
Returns:
|
46 |
Tuple of (optimized_prompt, analysis_report, score_html, metadata)
|
@@ -49,14 +55,17 @@ class FluxOptimizer:
|
|
49 |
metadata = {
|
50 |
"processing_time": 0.0,
|
51 |
"success": False,
|
52 |
-
"model_used": self.model_name or "
|
53 |
"device": self.device_config["device"],
|
|
|
|
|
|
|
54 |
"error": None
|
55 |
}
|
56 |
|
57 |
try:
|
58 |
# Step 1: Validate and optimize input image
|
59 |
-
logger.info("Starting
|
60 |
|
61 |
if not validate_image(image):
|
62 |
error_msg = "Invalid or unsupported image format"
|
@@ -71,36 +80,56 @@ class FluxOptimizer:
|
|
71 |
|
72 |
logger.info(f"Image optimized to size: {optimized_image.size}")
|
73 |
|
74 |
-
# Step 2:
|
75 |
-
logger.info("Running
|
76 |
analysis_success, analysis_result = safe_execute(
|
77 |
analyze_image,
|
78 |
optimized_image,
|
79 |
-
self.model_name
|
|
|
80 |
)
|
81 |
|
82 |
if not analysis_success:
|
83 |
-
error_msg = f"
|
84 |
logger.error(error_msg)
|
85 |
return self._create_error_response(error_msg, metadata)
|
86 |
|
87 |
description, analysis_metadata = analysis_result
|
88 |
-
logger.info(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
# Step
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
if not optimized_prompt:
|
95 |
-
optimized_prompt = "A professional photograph"
|
96 |
-
logger.warning("Empty prompt after optimization, using fallback")
|
97 |
|
98 |
-
# Step
|
99 |
-
logger.info("Calculating quality score...")
|
100 |
score, score_breakdown = calculate_prompt_score(optimized_prompt, analysis_metadata)
|
101 |
grade_info = get_score_grade(score)
|
102 |
|
103 |
-
# Step
|
104 |
processing_time = time.time() - start_time
|
105 |
metadata.update({
|
106 |
"processing_time": processing_time,
|
@@ -108,26 +137,29 @@ class FluxOptimizer:
|
|
108 |
"prompt_length": len(optimized_prompt),
|
109 |
"score": score,
|
110 |
"grade": grade_info["grade"],
|
111 |
-
"analysis_metadata": analysis_metadata
|
|
|
|
|
|
|
112 |
})
|
113 |
|
114 |
-
analysis_report = self.
|
115 |
optimized_prompt, analysis_metadata, score,
|
116 |
-
score_breakdown, processing_time
|
117 |
)
|
118 |
|
119 |
-
# Step
|
120 |
-
score_html = self.
|
121 |
|
122 |
# Update statistics
|
123 |
self._update_stats(processing_time, True)
|
124 |
|
125 |
-
logger.info(f"
|
126 |
return optimized_prompt, analysis_report, score_html, metadata
|
127 |
|
128 |
except Exception as e:
|
129 |
processing_time = time.time() - start_time
|
130 |
-
error_msg = f"Unexpected error in
|
131 |
logger.error(error_msg, exc_info=True)
|
132 |
|
133 |
metadata.update({
|
@@ -142,74 +174,122 @@ class FluxOptimizer:
|
|
142 |
# Always clean up memory
|
143 |
clean_memory()
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
def _create_error_response(self, error_msg: str, metadata: Dict[str, Any]) -> Tuple[str, str, str, Dict[str, Any]]:
|
146 |
"""Create standardized error response"""
|
147 |
-
error_prompt = "❌
|
148 |
-
error_report = f"**Error:** {error_msg}
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
metadata["success"] = False
|
152 |
metadata["error"] = error_msg
|
153 |
|
154 |
return error_prompt, error_report, error_html, metadata
|
155 |
|
156 |
-
def
|
157 |
score: int, breakdown: Dict[str, int],
|
158 |
-
processing_time: float) -> str:
|
159 |
-
"""Generate comprehensive analysis report"""
|
160 |
|
161 |
model_used = analysis_metadata.get("model", "Unknown")
|
162 |
device_used = analysis_metadata.get("device", self.device_config["device"])
|
163 |
confidence = analysis_metadata.get("confidence", 0.0)
|
|
|
|
|
164 |
|
165 |
# Device status emoji
|
166 |
device_emoji = "⚡" if device_used == "cuda" else "💻"
|
|
|
167 |
|
168 |
-
report = f"""**
|
169 |
**Processing:** {device_emoji} {device_used.upper()} • {processing_time:.1f}s • Model: {model_used}
|
170 |
-
**Score:** {score}/100 • Confidence: {confidence:.0%}
|
171 |
|
172 |
-
|
173 |
-
• **Prompt Quality:** {breakdown.get('prompt_quality', 0)}/
|
174 |
-
• **Technical Details:** {breakdown.get('technical_details', 0)}/25 - Camera and
|
175 |
-
• **
|
176 |
-
• **
|
177 |
|
178 |
-
|
179 |
-
**
|
180 |
-
**
|
|
|
181 |
|
182 |
-
|
183 |
-
✅
|
184 |
-
✅
|
185 |
-
✅ Technical
|
186 |
-
✅
|
187 |
-
✅
|
|
|
188 |
|
189 |
-
|
190 |
• **Processing Time:** {processing_time:.1f}s
|
191 |
• **Device:** {device_used.upper()}
|
192 |
• **Model Confidence:** {confidence:.0%}
|
|
|
|
|
193 |
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
return report
|
197 |
|
198 |
-
def
|
199 |
-
"""Generate HTML for score display"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
html = f'''
|
202 |
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {grade_info["color"]}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
|
|
|
203 |
<div style="font-size: 3rem; font-weight: 800; color: {grade_info["color"]}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
|
204 |
<div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade_info["grade"]}</div>
|
205 |
-
<div style="font-size:
|
|
|
206 |
</div>
|
207 |
'''
|
208 |
|
209 |
return html
|
210 |
|
211 |
def _update_stats(self, processing_time: float, success: bool) -> None:
|
212 |
-
"""Update processing statistics"""
|
213 |
self.processing_stats["total_processed"] += 1
|
214 |
|
215 |
if success:
|
@@ -225,16 +305,19 @@ class FluxOptimizer:
|
|
225 |
(current_avg * (total_count - 1) + processing_time) / total_count
|
226 |
)
|
227 |
|
228 |
-
def
|
229 |
-
"""Get
|
230 |
stats = self.processing_stats.copy()
|
231 |
|
232 |
if stats["total_processed"] > 0:
|
233 |
stats["success_rate"] = stats["successful_analyses"] / stats["total_processed"]
|
|
|
234 |
else:
|
235 |
stats["success_rate"] = 0.0
|
|
|
236 |
|
237 |
stats["device_info"] = self.device_config
|
|
|
238 |
|
239 |
return stats
|
240 |
|
@@ -244,89 +327,162 @@ class FluxOptimizer:
|
|
244 |
"total_processed": 0,
|
245 |
"successful_analyses": 0,
|
246 |
"failed_analyses": 0,
|
247 |
-
"average_processing_time": 0.0
|
|
|
|
|
248 |
}
|
249 |
-
logger.info("
|
250 |
|
251 |
|
252 |
-
class
|
253 |
-
"""Handle batch processing
|
254 |
|
255 |
-
def __init__(self, optimizer:
|
256 |
self.optimizer = optimizer
|
257 |
self.batch_results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
def
|
260 |
-
"""Process multiple images
|
261 |
results = []
|
|
|
|
|
|
|
|
|
262 |
|
263 |
for i, image in enumerate(images):
|
264 |
-
logger.info(f"Processing batch item {i+1}/{len(images)}")
|
265 |
|
266 |
try:
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
results.append({
|
269 |
"index": i,
|
270 |
-
"success":
|
271 |
-
"result": result
|
|
|
|
|
272 |
})
|
273 |
|
274 |
except Exception as e:
|
275 |
-
logger.error(f"
|
276 |
results.append({
|
277 |
"index": i,
|
278 |
"success": False,
|
279 |
-
"error": str(e)
|
|
|
|
|
280 |
})
|
281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
self.batch_results = results
|
|
|
|
|
283 |
return results
|
284 |
|
285 |
-
def
|
286 |
-
"""Get summary of batch processing
|
287 |
if not self.batch_results:
|
288 |
-
return {"total": 0, "successful": 0, "failed": 0}
|
289 |
|
290 |
successful = sum(1 for r in self.batch_results if r["success"])
|
291 |
total = len(self.batch_results)
|
292 |
|
293 |
-
|
294 |
"total": total,
|
295 |
"successful": successful,
|
296 |
"failed": total - successful,
|
297 |
-
"success_rate": successful / total if total > 0 else 0.0
|
|
|
|
|
|
|
298 |
}
|
|
|
|
|
299 |
|
300 |
|
301 |
-
# Global optimizer instance
|
302 |
-
|
303 |
|
304 |
|
305 |
-
def process_image_simple(image: Any, model_name: str = None) -> Tuple[str, str, str]:
|
306 |
"""
|
307 |
-
Simple interface for image processing
|
308 |
|
309 |
Args:
|
310 |
image: Input image
|
311 |
model_name: Optional model name
|
|
|
312 |
|
313 |
Returns:
|
314 |
Tuple of (prompt, report, score_html)
|
315 |
"""
|
316 |
-
if model_name and model_name !=
|
317 |
# Create temporary optimizer with specified model
|
318 |
-
temp_optimizer =
|
319 |
-
prompt, report, score_html, _ = temp_optimizer.process_image(image)
|
320 |
else:
|
321 |
-
prompt, report, score_html, _ =
|
322 |
|
323 |
return prompt, report, score_html
|
324 |
|
325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
# Export main components
|
327 |
__all__ = [
|
328 |
-
"
|
329 |
-
"
|
330 |
-
"
|
331 |
-
"process_image_simple"
|
|
|
|
|
332 |
]
|
|
|
1 |
"""
|
2 |
+
Main processing logic for Phramer AI
|
3 |
+
By Pariente AI, for MIA TV Series
|
4 |
+
|
5 |
+
Enhanced image analysis with professional cinematography integration and multi-engine optimization
|
6 |
"""
|
7 |
|
8 |
import logging
|
|
|
11 |
from PIL import Image
|
12 |
from datetime import datetime
|
13 |
|
14 |
+
from config import APP_CONFIG, PROCESSING_CONFIG, get_device_config, PROFESSIONAL_PHOTOGRAPHY_CONFIG
|
15 |
from utils import (
|
16 |
optimize_image, validate_image, apply_flux_rules,
|
17 |
calculate_prompt_score, get_score_grade, format_analysis_report,
|
18 |
+
clean_memory, safe_execute, detect_scene_type_from_analysis,
|
19 |
+
enhance_prompt_with_cinematography_knowledge
|
20 |
)
|
21 |
from models import analyze_image
|
22 |
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
|
26 |
+
class PhramerlAIOptimizer:
|
27 |
+
"""Main optimizer class for Phramer AI prompt generation with cinematography integration"""
|
28 |
|
29 |
def __init__(self, model_name: str = None):
|
30 |
self.model_name = model_name
|
|
|
33 |
"total_processed": 0,
|
34 |
"successful_analyses": 0,
|
35 |
"failed_analyses": 0,
|
36 |
+
"average_processing_time": 0.0,
|
37 |
+
"cinematography_enhancements": 0,
|
38 |
+
"scene_types_detected": {}
|
39 |
}
|
40 |
|
41 |
+
logger.info(f"Phramer AI Optimizer initialized - Device: {self.device_config['device']}")
|
42 |
|
43 |
+
def process_image(self, image: Any, analysis_type: str = "multiengine") -> Tuple[str, str, str, Dict[str, Any]]:
|
44 |
"""
|
45 |
+
Complete image processing pipeline with cinematography enhancement
|
46 |
|
47 |
Args:
|
48 |
image: Input image (PIL, numpy array, or file path)
|
49 |
+
analysis_type: Type of analysis ("multiengine", "cinematic", "flux")
|
50 |
|
51 |
Returns:
|
52 |
Tuple of (optimized_prompt, analysis_report, score_html, metadata)
|
|
|
55 |
metadata = {
|
56 |
"processing_time": 0.0,
|
57 |
"success": False,
|
58 |
+
"model_used": self.model_name or "bagel-professional",
|
59 |
"device": self.device_config["device"],
|
60 |
+
"analysis_type": analysis_type,
|
61 |
+
"cinematography_enhanced": False,
|
62 |
+
"scene_type": "unknown",
|
63 |
"error": None
|
64 |
}
|
65 |
|
66 |
try:
|
67 |
# Step 1: Validate and optimize input image
|
68 |
+
logger.info(f"Starting Phramer AI processing pipeline - Analysis type: {analysis_type}")
|
69 |
|
70 |
if not validate_image(image):
|
71 |
error_msg = "Invalid or unsupported image format"
|
|
|
80 |
|
81 |
logger.info(f"Image optimized to size: {optimized_image.size}")
|
82 |
|
83 |
+
# Step 2: Enhanced image analysis with cinematography context
|
84 |
+
logger.info("Running enhanced BAGEL analysis with cinematography integration...")
|
85 |
analysis_success, analysis_result = safe_execute(
|
86 |
analyze_image,
|
87 |
optimized_image,
|
88 |
+
self.model_name,
|
89 |
+
analysis_type
|
90 |
)
|
91 |
|
92 |
if not analysis_success:
|
93 |
+
error_msg = f"Enhanced image analysis failed: {analysis_result}"
|
94 |
logger.error(error_msg)
|
95 |
return self._create_error_response(error_msg, metadata)
|
96 |
|
97 |
description, analysis_metadata = analysis_result
|
98 |
+
logger.info(f"Enhanced analysis complete: {len(description)} characters")
|
99 |
+
|
100 |
+
# Step 3: Detect scene type and apply cinematography enhancements
|
101 |
+
scene_type = detect_scene_type_from_analysis(analysis_metadata)
|
102 |
+
metadata["scene_type"] = scene_type
|
103 |
+
|
104 |
+
# Update scene statistics
|
105 |
+
if scene_type in self.processing_stats["scene_types_detected"]:
|
106 |
+
self.processing_stats["scene_types_detected"][scene_type] += 1
|
107 |
+
else:
|
108 |
+
self.processing_stats["scene_types_detected"][scene_type] = 1
|
109 |
+
|
110 |
+
logger.info(f"Scene type detected: {scene_type}")
|
111 |
+
|
112 |
+
# Step 4: Apply enhanced FLUX optimization with cinematography knowledge
|
113 |
+
logger.info("Applying enhanced multi-engine optimization...")
|
114 |
+
optimized_prompt = apply_flux_rules(description, analysis_metadata)
|
115 |
|
116 |
+
# Step 5: Additional cinematography enhancement if enabled
|
117 |
+
if PROFESSIONAL_PHOTOGRAPHY_CONFIG.get("enable_expert_analysis", True):
|
118 |
+
logger.info("Applying professional cinematography enhancement...")
|
119 |
+
optimized_prompt = enhance_prompt_with_cinematography_knowledge(optimized_prompt, scene_type)
|
120 |
+
metadata["cinematography_enhanced"] = True
|
121 |
+
self.processing_stats["cinematography_enhancements"] += 1
|
122 |
|
123 |
if not optimized_prompt:
|
124 |
+
optimized_prompt = "A professional cinematic photograph with technical excellence"
|
125 |
+
logger.warning("Empty prompt after optimization, using cinematography fallback")
|
126 |
|
127 |
+
# Step 6: Calculate enhanced quality score
|
128 |
+
logger.info("Calculating professional quality score...")
|
129 |
score, score_breakdown = calculate_prompt_score(optimized_prompt, analysis_metadata)
|
130 |
grade_info = get_score_grade(score)
|
131 |
|
132 |
+
# Step 7: Generate comprehensive analysis report
|
133 |
processing_time = time.time() - start_time
|
134 |
metadata.update({
|
135 |
"processing_time": processing_time,
|
|
|
137 |
"prompt_length": len(optimized_prompt),
|
138 |
"score": score,
|
139 |
"grade": grade_info["grade"],
|
140 |
+
"analysis_metadata": analysis_metadata,
|
141 |
+
"score_breakdown": score_breakdown,
|
142 |
+
"has_camera_suggestion": analysis_metadata.get("has_camera_suggestion", False),
|
143 |
+
"professional_enhancement": analysis_metadata.get("professional_enhancement", False)
|
144 |
})
|
145 |
|
146 |
+
analysis_report = self._generate_enhanced_report(
|
147 |
optimized_prompt, analysis_metadata, score,
|
148 |
+
score_breakdown, processing_time, scene_type
|
149 |
)
|
150 |
|
151 |
+
# Step 8: Create enhanced score HTML
|
152 |
+
score_html = self._generate_enhanced_score_html(score, grade_info, scene_type)
|
153 |
|
154 |
# Update statistics
|
155 |
self._update_stats(processing_time, True)
|
156 |
|
157 |
+
logger.info(f"Phramer AI processing complete - Scene: {scene_type}, Score: {score}, Time: {processing_time:.1f}s")
|
158 |
return optimized_prompt, analysis_report, score_html, metadata
|
159 |
|
160 |
except Exception as e:
|
161 |
processing_time = time.time() - start_time
|
162 |
+
error_msg = f"Unexpected error in Phramer AI pipeline: {str(e)}"
|
163 |
logger.error(error_msg, exc_info=True)
|
164 |
|
165 |
metadata.update({
|
|
|
174 |
# Always clean up memory
|
175 |
clean_memory()
|
176 |
|
177 |
+
def process_for_cinematic(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
|
178 |
+
"""Process image specifically for cinematic/MIA TV Series production"""
|
179 |
+
return self.process_image(image, analysis_type="cinematic")
|
180 |
+
|
181 |
+
def process_for_flux(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
|
182 |
+
"""Process image specifically for FLUX generation"""
|
183 |
+
return self.process_image(image, analysis_type="flux")
|
184 |
+
|
185 |
+
def process_for_multiengine(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
|
186 |
+
"""Process image for multi-engine compatibility (Flux, Midjourney, etc.)"""
|
187 |
+
return self.process_image(image, analysis_type="multiengine")
|
188 |
+
|
189 |
def _create_error_response(self, error_msg: str, metadata: Dict[str, Any]) -> Tuple[str, str, str, Dict[str, Any]]:
|
190 |
"""Create standardized error response"""
|
191 |
+
error_prompt = "❌ Phramer AI processing failed"
|
192 |
+
error_report = f"""**Error:** {error_msg}
|
193 |
+
|
194 |
+
**Troubleshooting:**
|
195 |
+
• Verify image format (JPG, PNG, WebP)
|
196 |
+
• Check image size (max 1024px)
|
197 |
+
• Ensure stable internet connection
|
198 |
+
• Try with a different image
|
199 |
+
|
200 |
+
**Support:** Contact Pariente AI technical team"""
|
201 |
+
|
202 |
+
error_html = self._generate_enhanced_score_html(0, get_score_grade(0), "error")
|
203 |
|
204 |
metadata["success"] = False
|
205 |
metadata["error"] = error_msg
|
206 |
|
207 |
return error_prompt, error_report, error_html, metadata
|
208 |
|
209 |
+
def _generate_enhanced_report(self, prompt: str, analysis_metadata: Dict[str, Any],
|
210 |
score: int, breakdown: Dict[str, int],
|
211 |
+
processing_time: float, scene_type: str) -> str:
|
212 |
+
"""Generate comprehensive analysis report with cinematography insights"""
|
213 |
|
214 |
model_used = analysis_metadata.get("model", "Unknown")
|
215 |
device_used = analysis_metadata.get("device", self.device_config["device"])
|
216 |
confidence = analysis_metadata.get("confidence", 0.0)
|
217 |
+
has_cinema_context = analysis_metadata.get("cinematography_context_applied", False)
|
218 |
+
camera_setup = analysis_metadata.get("camera_setup", "Not detected")
|
219 |
|
220 |
# Device status emoji
|
221 |
device_emoji = "⚡" if device_used == "cuda" else "💻"
|
222 |
+
cinema_emoji = "🎬" if has_cinema_context else "📸"
|
223 |
|
224 |
+
report = f"""**{cinema_emoji} PHRAMER AI ANALYSIS COMPLETE**
|
225 |
**Processing:** {device_emoji} {device_used.upper()} • {processing_time:.1f}s • Model: {model_used}
|
226 |
+
**Score:** {score}/100 • Scene: {scene_type.replace('_', ' ').title()} • Confidence: {confidence:.0%}
|
227 |
|
228 |
+
**🎯 SCORE BREAKDOWN:**
|
229 |
+
• **Prompt Quality:** {breakdown.get('prompt_quality', 0)}/25 - Content detail and structure
|
230 |
+
• **Technical Details:** {breakdown.get('technical_details', 0)}/25 - Camera and equipment specs
|
231 |
+
• **Professional Cinematography:** {breakdown.get('professional_cinematography', 0)}/25 - Cinema expertise applied
|
232 |
+
• **Multi-Engine Optimization:** {breakdown.get('multi_engine_optimization', 0)}/25 - Platform compatibility
|
233 |
|
234 |
+
**🎬 CINEMATOGRAPHY ANALYSIS:**
|
235 |
+
**Scene Type:** {scene_type.replace('_', ' ').title()}
|
236 |
+
**Camera Setup:** {camera_setup}
|
237 |
+
**Professional Context:** {'✅ Applied' if has_cinema_context else '❌ Basic'}
|
238 |
|
239 |
+
**⚙️ OPTIMIZATIONS APPLIED:**
|
240 |
+
✅ Professional camera configuration
|
241 |
+
✅ Cinematography lighting principles
|
242 |
+
✅ Technical specifications enhanced
|
243 |
+
✅ Multi-engine compatibility (Flux, Midjourney)
|
244 |
+
✅ Cinema-quality terminology
|
245 |
+
✅ Scene-specific enhancements
|
246 |
|
247 |
+
**📊 PERFORMANCE METRICS:**
|
248 |
• **Processing Time:** {processing_time:.1f}s
|
249 |
• **Device:** {device_used.upper()}
|
250 |
• **Model Confidence:** {confidence:.0%}
|
251 |
+
• **Prompt Length:** {len(prompt)} characters
|
252 |
+
• **Enhancement Level:** {'Professional' if has_cinema_context else 'Standard'}
|
253 |
|
254 |
+
**🏆 COMPATIBILITY:**
|
255 |
+
• **FLUX:** ✅ Optimized
|
256 |
+
• **Midjourney:** ✅ Compatible
|
257 |
+
• **Stable Diffusion:** ✅ Ready
|
258 |
+
• **Other Engines:** ✅ Universal format
|
259 |
+
|
260 |
+
**Pariente AI • MIA TV Series • 30+ Years Cinema Experience**"""
|
261 |
|
262 |
return report
|
263 |
|
264 |
+
def _generate_enhanced_score_html(self, score: int, grade_info: Dict[str, str], scene_type: str) -> str:
|
265 |
+
"""Generate enhanced HTML for score display with cinematography context"""
|
266 |
+
|
267 |
+
# Scene type emoji
|
268 |
+
scene_emojis = {
|
269 |
+
"cinematic": "🎬",
|
270 |
+
"portrait": "👤",
|
271 |
+
"landscape": "🏔️",
|
272 |
+
"street": "🏙️",
|
273 |
+
"architectural": "🏛️",
|
274 |
+
"commercial": "💼",
|
275 |
+
"error": "❌"
|
276 |
+
}
|
277 |
+
scene_emoji = scene_emojis.get(scene_type, "📸")
|
278 |
|
279 |
html = f'''
|
280 |
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {grade_info["color"]}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
|
281 |
+
<div style="font-size: 2.5rem; margin-bottom: 0.5rem;">{scene_emoji}</div>
|
282 |
<div style="font-size: 3rem; font-weight: 800; color: {grade_info["color"]}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
|
283 |
<div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade_info["grade"]}</div>
|
284 |
+
<div style="font-size: 0.9rem; color: #15803d; margin: 0; text-transform: capitalize; letter-spacing: 0.05em; font-weight: 500;">{scene_type.replace('_', ' ')} Scene</div>
|
285 |
+
<div style="font-size: 0.8rem; color: #15803d; margin: 0.5rem 0 0 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Phramer AI Quality</div>
|
286 |
</div>
|
287 |
'''
|
288 |
|
289 |
return html
|
290 |
|
291 |
def _update_stats(self, processing_time: float, success: bool) -> None:
|
292 |
+
"""Update processing statistics with cinematography tracking"""
|
293 |
self.processing_stats["total_processed"] += 1
|
294 |
|
295 |
if success:
|
|
|
305 |
(current_avg * (total_count - 1) + processing_time) / total_count
|
306 |
)
|
307 |
|
308 |
+
def get_enhanced_stats(self) -> Dict[str, Any]:
|
309 |
+
"""Get enhanced processing statistics with cinematography insights"""
|
310 |
stats = self.processing_stats.copy()
|
311 |
|
312 |
if stats["total_processed"] > 0:
|
313 |
stats["success_rate"] = stats["successful_analyses"] / stats["total_processed"]
|
314 |
+
stats["cinematography_enhancement_rate"] = stats["cinematography_enhancements"] / stats["total_processed"]
|
315 |
else:
|
316 |
stats["success_rate"] = 0.0
|
317 |
+
stats["cinematography_enhancement_rate"] = 0.0
|
318 |
|
319 |
stats["device_info"] = self.device_config
|
320 |
+
stats["most_common_scene"] = max(stats["scene_types_detected"].items(), key=lambda x: x[1])[0] if stats["scene_types_detected"] else "none"
|
321 |
|
322 |
return stats
|
323 |
|
|
|
327 |
"total_processed": 0,
|
328 |
"successful_analyses": 0,
|
329 |
"failed_analyses": 0,
|
330 |
+
"average_processing_time": 0.0,
|
331 |
+
"cinematography_enhancements": 0,
|
332 |
+
"scene_types_detected": {}
|
333 |
}
|
334 |
+
logger.info("Phramer AI processing statistics reset")
|
335 |
|
336 |
|
337 |
+
class CinematicBatchProcessor:
|
338 |
+
"""Handle batch processing for MIA TV Series production"""
|
339 |
|
340 |
+
def __init__(self, optimizer: PhramerlAIOptimizer):
|
341 |
self.optimizer = optimizer
|
342 |
self.batch_results = []
|
343 |
+
self.batch_stats = {
|
344 |
+
"total_images": 0,
|
345 |
+
"successful_analyses": 0,
|
346 |
+
"scene_type_distribution": {},
|
347 |
+
"average_score": 0.0,
|
348 |
+
"processing_time_total": 0.0
|
349 |
+
}
|
350 |
|
351 |
+
def process_cinematic_batch(self, images: list, analysis_type: str = "cinematic") -> list:
|
352 |
+
"""Process multiple images for cinematic production"""
|
353 |
results = []
|
354 |
+
total_score = 0
|
355 |
+
successful_count = 0
|
356 |
+
|
357 |
+
logger.info(f"Starting cinematic batch processing: {len(images)} images")
|
358 |
|
359 |
for i, image in enumerate(images):
|
360 |
+
logger.info(f"Processing cinematic batch item {i+1}/{len(images)}")
|
361 |
|
362 |
try:
|
363 |
+
if analysis_type == "cinematic":
|
364 |
+
result = self.optimizer.process_for_cinematic(image)
|
365 |
+
elif analysis_type == "flux":
|
366 |
+
result = self.optimizer.process_for_flux(image)
|
367 |
+
else:
|
368 |
+
result = self.optimizer.process_for_multiengine(image)
|
369 |
+
|
370 |
+
success = result[3]["success"]
|
371 |
+
|
372 |
+
if success:
|
373 |
+
score = result[3].get("score", 0)
|
374 |
+
scene_type = result[3].get("scene_type", "unknown")
|
375 |
+
|
376 |
+
total_score += score
|
377 |
+
successful_count += 1
|
378 |
+
|
379 |
+
# Update scene distribution
|
380 |
+
if scene_type in self.batch_stats["scene_type_distribution"]:
|
381 |
+
self.batch_stats["scene_type_distribution"][scene_type] += 1
|
382 |
+
else:
|
383 |
+
self.batch_stats["scene_type_distribution"][scene_type] = 1
|
384 |
+
|
385 |
results.append({
|
386 |
"index": i,
|
387 |
+
"success": success,
|
388 |
+
"result": result,
|
389 |
+
"scene_type": result[3].get("scene_type", "unknown"),
|
390 |
+
"score": result[3].get("score", 0)
|
391 |
})
|
392 |
|
393 |
except Exception as e:
|
394 |
+
logger.error(f"Cinematic batch item {i} failed: {e}")
|
395 |
results.append({
|
396 |
"index": i,
|
397 |
"success": False,
|
398 |
+
"error": str(e),
|
399 |
+
"scene_type": "error",
|
400 |
+
"score": 0
|
401 |
})
|
402 |
|
403 |
+
# Update batch statistics
|
404 |
+
self.batch_stats.update({
|
405 |
+
"total_images": len(images),
|
406 |
+
"successful_analyses": successful_count,
|
407 |
+
"average_score": total_score / successful_count if successful_count > 0 else 0.0
|
408 |
+
})
|
409 |
+
|
410 |
self.batch_results = results
|
411 |
+
logger.info(f"Cinematic batch processing complete: {successful_count}/{len(images)} successful")
|
412 |
+
|
413 |
return results
|
414 |
|
415 |
+
def get_cinematic_batch_summary(self) -> Dict[str, Any]:
|
416 |
+
"""Get comprehensive summary of cinematic batch processing"""
|
417 |
if not self.batch_results:
|
418 |
+
return {"total": 0, "successful": 0, "failed": 0, "average_score": 0.0}
|
419 |
|
420 |
successful = sum(1 for r in self.batch_results if r["success"])
|
421 |
total = len(self.batch_results)
|
422 |
|
423 |
+
summary = {
|
424 |
"total": total,
|
425 |
"successful": successful,
|
426 |
"failed": total - successful,
|
427 |
+
"success_rate": successful / total if total > 0 else 0.0,
|
428 |
+
"average_score": self.batch_stats["average_score"],
|
429 |
+
"scene_distribution": self.batch_stats["scene_type_distribution"],
|
430 |
+
"most_common_scene": max(self.batch_stats["scene_type_distribution"].items(), key=lambda x: x[1])[0] if self.batch_stats["scene_type_distribution"] else "none"
|
431 |
}
|
432 |
+
|
433 |
+
return summary
|
434 |
|
435 |
|
436 |
+
# Global optimizer instance for Phramer AI
|
437 |
+
phramer_optimizer = PhramerlAIOptimizer()
|
438 |
|
439 |
|
440 |
+
def process_image_simple(image: Any, model_name: str = None, analysis_type: str = "multiengine") -> Tuple[str, str, str]:
|
441 |
"""
|
442 |
+
Simple interface for Phramer AI image processing
|
443 |
|
444 |
Args:
|
445 |
image: Input image
|
446 |
model_name: Optional model name
|
447 |
+
analysis_type: Type of analysis ("multiengine", "cinematic", "flux")
|
448 |
|
449 |
Returns:
|
450 |
Tuple of (prompt, report, score_html)
|
451 |
"""
|
452 |
+
if model_name and model_name != phramer_optimizer.model_name:
|
453 |
# Create temporary optimizer with specified model
|
454 |
+
temp_optimizer = PhramerlAIOptimizer(model_name)
|
455 |
+
prompt, report, score_html, _ = temp_optimizer.process_image(image, analysis_type)
|
456 |
else:
|
457 |
+
prompt, report, score_html, _ = phramer_optimizer.process_image(image, analysis_type)
|
458 |
|
459 |
return prompt, report, score_html
|
460 |
|
461 |
|
462 |
+
def process_for_mia_tv_series(image: Any) -> Tuple[str, str, str]:
|
463 |
+
"""
|
464 |
+
Specialized processing for MIA TV Series production
|
465 |
+
|
466 |
+
Args:
|
467 |
+
image: Input image
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
Tuple of (cinematic_prompt, detailed_report, score_html)
|
471 |
+
"""
|
472 |
+
return phramer_optimizer.process_for_cinematic(image)[:3]
|
473 |
+
|
474 |
+
|
475 |
+
def get_phramer_stats() -> Dict[str, Any]:
|
476 |
+
"""Get comprehensive Phramer AI processing statistics"""
|
477 |
+
return phramer_optimizer.get_enhanced_stats()
|
478 |
+
|
479 |
+
|
480 |
# Export main components
|
481 |
__all__ = [
|
482 |
+
"PhramerlAIOptimizer",
|
483 |
+
"CinematicBatchProcessor",
|
484 |
+
"phramer_optimizer",
|
485 |
+
"process_image_simple",
|
486 |
+
"process_for_mia_tv_series",
|
487 |
+
"get_phramer_stats"
|
488 |
]
|