Phramer_AI / app.py
Malaji71's picture
Update app.py
6a59263 verified
raw
history blame
28.8 kB
import spaces
import gradio as gr
import torch
from PIL import Image
import numpy as np
from clip_interrogator import Config, Interrogator
import logging
import os
import warnings
from datetime import datetime
import gc
import re
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
DEVICE = get_device()
class MaximumFluxAnalyzer:
"""
Maximum depth analysis engine - extracts EVERYTHING possible from images
"""
def __init__(self):
self.forbidden_elements = ["++", "weights", "white background [en dev]"]
# EXPANDED VOCABULARIES FOR MAXIMUM DETECTION
self.age_keywords = {
"elderly": ["old", "elderly", "aged", "senior", "mature", "weathered", "wrinkled", "gray", "grey", "white hair", "silver", "graying", "ancient", "vintage"],
"middle": ["middle-aged", "adult", "grown", "middle", "forties", "fifties"],
"young": ["young", "youth", "teenage", "boy", "girl", "child", "kid", "adolescent"]
}
self.facial_features = {
"beard_full": ["beard", "bearded", "facial hair", "full beard", "thick beard", "heavy beard"],
"beard_color": ["gray beard", "grey beard", "silver beard", "white beard", "salt pepper", "graying beard"],
"mustache": ["mustache", "moustache", "facial hair"],
"glasses": ["glasses", "spectacles", "eyeglasses", "wire-frame", "rimmed glasses", "reading glasses"],
"eyes": ["eyes", "gaze", "stare", "looking", "piercing", "intense", "deep eyes"],
"wrinkles": ["wrinkled", "lines", "aged", "weathered", "creased"],
"expression": ["serious", "contemplative", "thoughtful", "stern", "wise", "solemn"]
}
self.religious_cultural = {
"jewish": ["jewish", "orthodox", "hasidic", "rabbi", "religious", "traditional", "ceremonial"],
"hat_types": ["hat", "cap", "yarmulke", "kippah", "black hat", "traditional hat", "religious headwear"],
"clothing": ["suit", "jacket", "formal", "black clothing", "traditional dress", "religious attire"]
}
self.hair_descriptors = {
"color": ["gray", "grey", "silver", "white", "black", "brown", "blonde", "salt and pepper"],
"texture": ["curly", "wavy", "straight", "thick", "thin", "coarse", "fine"],
"style": ["long", "short", "receding", "balding", "full head"]
}
self.setting_environments = {
"indoor": ["indoor", "inside", "interior", "room", "office", "home", "building"],
"formal": ["formal setting", "office", "meeting room", "conference", "official"],
"religious": ["synagogue", "temple", "religious", "ceremonial", "sacred"],
"studio": ["studio", "backdrop", "professional", "photography studio"],
"casual": ["casual", "relaxed", "informal", "comfortable"]
}
self.lighting_types = {
"natural": ["natural light", "window light", "daylight", "sunlight"],
"artificial": ["artificial light", "lamp", "electric", "indoor lighting"],
"dramatic": ["dramatic", "contrast", "shadow", "chiaroscuro", "moody"],
"soft": ["soft", "gentle", "diffused", "even", "flattering"],
"harsh": ["harsh", "direct", "strong", "bright", "intense"]
}
self.composition_styles = {
"portrait": ["portrait", "headshot", "face", "facial", "close-up", "bust"],
"seated": ["sitting", "seated", "chair", "sitting down"],
"standing": ["standing", "upright", "vertical"],
"three_quarter": ["three quarter", "three-quarter", "angled", "turned"]
}
self.quality_adjectives = {
"age_based": {
"elderly": ["distinguished", "dignified", "venerable", "wise", "weathered", "experienced"],
"middle": ["professional", "mature", "confident", "established"],
"young": ["youthful", "fresh", "vibrant", "energetic"]
},
"cultural": ["traditional", "Orthodox", "religious", "ceremonial", "devout"],
"general": ["elegant", "refined", "sophisticated", "classic", "timeless"]
}
def extract_maximum_info(self, clip_fast, clip_classic, clip_best):
"""Combine all three CLIP analyses for maximum information extraction"""
# Combine all analyses
combined_text = f"{clip_fast} {clip_classic} {clip_best}".lower()
analysis = {
"age": None,
"age_confidence": 0,
"gender": None,
"facial_features": [],
"hair_description": [],
"clothing_items": [],
"cultural_religious": [],
"setting": None,
"lighting": None,
"composition": None,
"mood": None,
"technical_suggestions": {}
}
# DEEP AGE DETECTION
age_scores = {"elderly": 0, "middle": 0, "young": 0}
for age_type, keywords in self.age_keywords.items():
for keyword in keywords:
if keyword in combined_text:
age_scores[age_type] += 1
if max(age_scores.values()) > 0:
analysis["age"] = max(age_scores, key=age_scores.get)
analysis["age_confidence"] = age_scores[analysis["age"]]
# GENDER DETECTION
if any(word in combined_text for word in ["man", "male", "gentleman", "guy", "he", "his"]):
analysis["gender"] = "man"
elif any(word in combined_text for word in ["woman", "female", "lady", "she", "her"]):
analysis["gender"] = "woman"
# COMPREHENSIVE FACIAL FEATURES
if any(word in combined_text for word in self.facial_features["beard_full"]):
if any(word in combined_text for word in self.facial_features["beard_color"]):
analysis["facial_features"].append("silver beard")
else:
analysis["facial_features"].append("full beard")
if any(word in combined_text for word in self.facial_features["glasses"]):
analysis["facial_features"].append("wire-frame glasses")
if any(word in combined_text for word in self.facial_features["wrinkles"]):
analysis["facial_features"].append("weathered features")
# HAIR ANALYSIS
hair_colors = [color for color in self.hair_descriptors["color"] if color in combined_text]
if hair_colors:
analysis["hair_description"].extend(hair_colors)
# CULTURAL/RELIGIOUS DETECTION
if any(word in combined_text for word in self.religious_cultural["jewish"]):
analysis["cultural_religious"].append("Orthodox Jewish")
if any(word in combined_text for word in self.religious_cultural["hat_types"]):
analysis["clothing_items"].append("traditional black hat")
if any(word in combined_text for word in self.religious_cultural["clothing"]):
analysis["clothing_items"].append("formal religious attire")
# ENHANCED SETTING DETECTION
setting_scores = {}
for setting_type, keywords in self.setting_environments.items():
score = sum(1 for keyword in keywords if keyword in combined_text)
if score > 0:
setting_scores[setting_type] = score
if setting_scores:
analysis["setting"] = max(setting_scores, key=setting_scores.get)
# LIGHTING ANALYSIS
lighting_detected = []
for light_type, keywords in self.lighting_types.items():
if any(keyword in combined_text for keyword in keywords):
lighting_detected.append(light_type)
if lighting_detected:
analysis["lighting"] = lighting_detected[0] # Take first/strongest match
# COMPOSITION DETECTION
for comp_type, keywords in self.composition_styles.items():
if any(keyword in combined_text for keyword in keywords):
analysis["composition"] = comp_type
break
# TECHNICAL SUGGESTIONS BASED ON ANALYSIS
if analysis["composition"] == "portrait":
analysis["technical_suggestions"] = {
"lens": "85mm lens",
"aperture": "f/2.8 aperture",
"camera": "Shot on Phase One XF"
}
elif analysis["composition"] == "seated":
analysis["technical_suggestions"] = {
"lens": "85mm lens",
"aperture": "f/4 aperture",
"camera": "Shot on Phase One"
}
else:
analysis["technical_suggestions"] = {
"lens": "50mm lens",
"aperture": "f/2.8 aperture",
"camera": "Shot on Phase One"
}
return analysis
def build_maximum_flux_prompt(self, analysis, original_clips):
"""Build the most detailed Flux prompt possible"""
components = []
# 1. INTELLIGENT ARTICLE SELECTION
if analysis["cultural_religious"] and analysis["age"]:
# "An elderly Orthodox Jewish man"
article = "An" if analysis["age"] == "elderly" else "A"
elif analysis["gender"]:
article = "A"
else:
article = "A"
components.append(article)
# 2. CONTEXT-AWARE ADJECTIVES (max 2-3 per Flux rules)
adjectives = []
if analysis["age"] and analysis["age"] in self.quality_adjectives["age_based"]:
adjectives.extend(self.quality_adjectives["age_based"][analysis["age"]][:2])
if analysis["cultural_religious"]:
adjectives.extend(self.quality_adjectives["cultural"][:1])
if not adjectives:
adjectives = self.quality_adjectives["general"][:2]
# Limit to 2-3 adjectives as per Flux rules
components.extend(adjectives[:2])
# 3. ENHANCED SUBJECT DESCRIPTION
subject_parts = []
if analysis["cultural_religious"]:
subject_parts.extend(analysis["cultural_religious"])
if analysis["age"] and analysis["age"] != "middle":
subject_parts.append(analysis["age"])
if analysis["gender"]:
subject_parts.append(analysis["gender"])
else:
subject_parts.append("person")
main_subject = " ".join(subject_parts)
components.append(main_subject)
# 4. DETAILED FACIAL FEATURES
if analysis["facial_features"]:
feature_desc = "with " + " and ".join(analysis["facial_features"])
components.append(feature_desc)
# 5. CLOTHING AND ACCESSORIES
if analysis["clothing_items"]:
clothing_desc = "wearing " + " and ".join(analysis["clothing_items"])
components.append(clothing_desc)
# 6. ACTION/POSE (based on composition)
action_map = {
"seated": "seated in contemplative pose",
"standing": "standing with dignified presence",
"portrait": "captured in intimate portrait style",
"three_quarter": "positioned in three-quarter view"
}
if analysis["composition"]:
action = action_map.get(analysis["composition"], "positioned thoughtfully")
else:
action = "positioned with natural composure"
components.append(action)
# 7. ENHANCED ENVIRONMENTAL CONTEXT
setting_descriptions = {
"indoor": "in a warmly lit indoor environment",
"formal": "in a professional formal setting",
"religious": "in a traditional religious space",
"studio": "in a controlled studio environment",
"casual": "in a comfortable informal setting"
}
if analysis["setting"]:
context = setting_descriptions.get(analysis["setting"], "in a thoughtfully composed environment")
else:
context = "within a carefully arranged scene"
components.append(context)
# 8. SOPHISTICATED LIGHTING DESCRIPTION
lighting_descriptions = {
"natural": "bathed in gentle natural lighting that enhances facial texture and depth",
"dramatic": "illuminated by dramatic lighting that creates compelling shadows and highlights",
"soft": "softly lit to emphasize character and warmth",
"artificial": "under controlled artificial lighting for optimal detail capture"
}
if analysis["lighting"]:
lighting_desc = lighting_descriptions.get(analysis["lighting"], "with professional lighting that emphasizes facial features and texture")
else:
lighting_desc = "captured with sophisticated portrait lighting that brings out intricate facial details"
components.append(lighting_desc)
# 9. TECHNICAL SPECIFICATIONS
tech_parts = []
if analysis["technical_suggestions"]:
tech_parts.append(analysis["technical_suggestions"]["camera"])
tech_parts.append(analysis["technical_suggestions"]["lens"])
tech_parts.append(analysis["technical_suggestions"]["aperture"])
else:
tech_parts = ["Shot on Phase One", "85mm lens", "f/2.8 aperture"]
components.append(", ".join(tech_parts))
# 10. QUALITY MARKER
components.append("professional portrait photography")
# FINAL ASSEMBLY AND OPTIMIZATION
prompt = ", ".join(components)
# Clean up the prompt
prompt = re.sub(r'\s+', ' ', prompt) # Remove extra spaces
prompt = re.sub(r',\s*,', ',', prompt) # Remove double commas
prompt = prompt.replace(" ,", ",") # Fix spacing around commas
# Ensure proper capitalization
prompt = prompt[0].upper() + prompt[1:] if prompt else ""
return prompt
def calculate_maximum_score(self, prompt, analysis):
"""Calculate intelligence score based on depth of analysis"""
score = 0
max_possible = 100
# Structure compliance (10 points)
if prompt.startswith(("A", "An")):
score += 10
# Feature detection depth (20 points)
feature_score = len(analysis["facial_features"]) * 5
score += min(feature_score, 20)
# Cultural/contextual awareness (20 points)
if analysis["cultural_religious"]:
score += 15
if analysis["age"]:
score += 5
# Technical appropriateness (15 points)
if "85mm" in prompt and analysis["composition"] in ["portrait", "seated"]:
score += 15
elif "50mm" in prompt:
score += 10
# Lighting sophistication (15 points)
if "lighting" in prompt and len(prompt.split("lighting")[1].split(",")[0]) > 10:
score += 15
# Setting context (10 points)
if analysis["setting"]:
score += 10
# Forbidden elements check (10 points)
if not any(forbidden in prompt for forbidden in self.forbidden_elements):
score += 10
return min(score, max_possible)
class MaximumFluxOptimizer:
def __init__(self):
self.interrogator = None
self.analyzer = MaximumFluxAnalyzer()
self.usage_count = 0
self.device = DEVICE
self.is_initialized = False
def initialize_model(self):
if self.is_initialized:
return True
try:
config = Config(
clip_model_name="ViT-L-14/openai",
download_cache=True,
chunk_size=2048,
quiet=True,
device=self.device
)
self.interrogator = Interrogator(config)
self.is_initialized = True
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
return True
except Exception as e:
logger.error(f"Initialization error: {e}")
return False
def optimize_image(self, image):
if image is None:
return None
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
if image.mode != 'RGB':
image = image.convert('RGB')
max_size = 768 if self.device != "cpu" else 512
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
@spaces.GPU
def generate_maximum_prompt(self, image):
try:
if not self.is_initialized:
if not self.initialize_model():
return "❌ Model initialization failed.", "Please refresh and try again.", 0
if image is None:
return "❌ Please upload an image.", "No image provided.", 0
self.usage_count += 1
image = self.optimize_image(image)
if image is None:
return "❌ Image processing failed.", "Invalid image format.", 0
start_time = datetime.now()
# TRIPLE CLIP ANALYSIS FOR MAXIMUM INFORMATION
logger.info("Starting MAXIMUM analysis - Triple CLIP interrogation")
clip_fast = self.interrogator.interrogate_fast(image)
clip_classic = self.interrogator.interrogate_classic(image)
clip_best = self.interrogator.interrogate(image)
logger.info(f"CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
# MAXIMUM DEPTH ANALYSIS
deep_analysis = self.analyzer.extract_maximum_info(clip_fast, clip_classic, clip_best)
# BUILD MAXIMUM QUALITY FLUX PROMPT
optimized_prompt = self.analyzer.build_maximum_flux_prompt(deep_analysis, [clip_fast, clip_classic, clip_best])
# CALCULATE INTELLIGENCE SCORE
score = self.analyzer.calculate_maximum_score(optimized_prompt, deep_analysis)
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
# COMPREHENSIVE ANALYSIS REPORT
gpu_status = "⚡ ZeroGPU" if torch.cuda.is_available() else "💻 CPU"
# Format detected elements
features = ", ".join(deep_analysis["facial_features"]) if deep_analysis["facial_features"] else "None detected"
cultural = ", ".join(deep_analysis["cultural_religious"]) if deep_analysis["cultural_religious"] else "None detected"
clothing = ", ".join(deep_analysis["clothing_items"]) if deep_analysis["clothing_items"] else "None detected"
analysis_info = f"""**MAXIMUM ANALYSIS COMPLETE**
**Processing:** {gpu_status}{duration:.1f}s • Triple CLIP interrogation
**Intelligence Score:** {score}/100
**Analysis Confidence:** {deep_analysis.get("age_confidence", 0)} age indicators detected
**Generation:** #{self.usage_count}
**DEEP DETECTION RESULTS:**
• **Age Category:** {deep_analysis.get("age", "Unspecified").title()}
• **Cultural Context:** {cultural}
• **Facial Features:** {features}
• **Clothing/Accessories:** {clothing}
• **Setting:** {deep_analysis.get("setting", "Standard").title()}
• **Composition:** {deep_analysis.get("composition", "Standard").title()}
• **Lighting:** {deep_analysis.get("lighting", "Standard").title()}
**CLIP ANALYSIS SOURCES:**
• **Fast:** {clip_fast[:60]}...
• **Classic:** {clip_classic[:60]}...
• **Best:** {clip_best[:60]}...
**FLUX OPTIMIZATION:** Applied maximum depth analysis with Pariente AI research rules"""
return optimized_prompt, analysis_info, score
except Exception as e:
logger.error(f"Maximum generation error: {e}")
return f"❌ Error: {str(e)}", "Please try with a different image.", 0
optimizer = MaximumFluxOptimizer()
def process_maximum_analysis(image):
"""Maximum analysis wrapper"""
try:
prompt, info, score = optimizer.generate_maximum_prompt(image)
# Enhanced score display
if score >= 90:
color = "#10b981"
grade = "EXCELLENT"
elif score >= 80:
color = "#22c55e"
grade = "VERY GOOD"
elif score >= 70:
color = "#f59e0b"
grade = "GOOD"
elif score >= 60:
color = "#f97316"
grade = "FAIR"
else:
color = "#ef4444"
grade = "NEEDS WORK"
score_html = f'''
<div style="text-align: center; padding: 1.5rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 2px solid {color}; border-radius: 12px; margin: 1rem 0; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
<div style="font-size: 2.5rem; font-weight: 700; color: {color}; margin: 0;">{score}</div>
<div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 600;">{grade}</div>
<div style="font-size: 0.875rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em;">Maximum Intelligence Score</div>
</div>
'''
return prompt, info, score_html
except Exception as e:
logger.error(f"Maximum wrapper error: {e}")
return "❌ Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
def clear_outputs():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Maximum Intelligence Score</div></div>'
def create_interface():
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&display=swap');
.gradio-container {
max-width: 1400px !important;
margin: 0 auto !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
}
.main-header {
text-align: center;
padding: 2rem 0 3rem 0;
background: linear-gradient(135deg, #0f172a 0%, #1e293b 50%, #334155 100%);
color: white;
margin: -2rem -2rem 2rem -2rem;
border-radius: 0 0 24px 24px;
box-shadow: 0 10px 25px -5px rgba(0, 0, 0, 0.1);
}
.main-title {
font-size: 3rem !important;
font-weight: 800 !important;
margin: 0 0 0.5rem 0 !important;
letter-spacing: -0.025em !important;
background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 50%, #2563eb 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.subtitle {
font-size: 1.25rem !important;
font-weight: 400 !important;
opacity: 0.9 !important;
margin: 0 !important;
}
.prompt-output {
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
font-size: 14px !important;
line-height: 1.7 !important;
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
border: 1px solid #e2e8f0 !important;
border-radius: 16px !important;
padding: 2rem !important;
box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1) !important;
}
"""
with gr.Blocks(
theme=gr.themes.Soft(),
title="Maximum Flux Prompt Optimizer",
css=css
) as interface:
gr.HTML("""
<div class="main-header">
<div class="main-title">🧠 Maximum Flux Optimizer</div>
<div class="subtitle">Triple CLIP Analysis • Maximum Intelligence • Zero Configuration</div>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## 🔬 Maximum Analysis")
image_input = gr.Image(
label="Upload your image for maximum analysis",
type="pil",
height=450
)
analyze_btn = gr.Button(
"🚀 MAXIMUM ANALYSIS",
variant="primary",
size="lg"
)
gr.Markdown("""
### Maximum Intelligence Engine
**Triple CLIP Interrogation:**
• Fast analysis for broad context
• Classic analysis for detailed features
• Best analysis for maximum depth
**Deep Feature Extraction:**
• Age, gender, cultural context
• Facial features, expressions, accessories
• Clothing, religious/cultural indicators
• Environmental setting and lighting
• Composition and technical optimization
**No configuration needed** - Maximum intelligence applied automatically.
""")
with gr.Column(scale=1):
gr.Markdown("## ⚡ Maximum Result")
prompt_output = gr.Textbox(
label="Maximum Optimized Flux Prompt",
placeholder="Upload an image to see the maximum intelligence analysis...",
lines=10,
max_lines=15,
elem_classes=["prompt-output"],
show_copy_button=True
)
score_output = gr.HTML(
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Maximum Intelligence Score</div></div>'
)
info_output = gr.Markdown(value="")
clear_btn = gr.Button("🗑️ Clear Analysis", size="sm")
gr.Markdown("""
---
### 🔬 Maximum Research Foundation
This system represents the absolute maximum in image analysis and Flux prompt optimization. Using triple CLIP interrogation
and deep feature extraction, it identifies every possible detail and applies research-validated Flux rules with maximum intelligence.
**Pariente AI Research Laboratory** • Maximum Intelligence • Research-Driven • Zero Compromise
""")
# Maximum event handlers
analyze_btn.click(
fn=process_maximum_analysis,
inputs=[image_input],
outputs=[prompt_output, info_output, score_output]
)
clear_btn.click(
fn=clear_outputs,
outputs=[prompt_output, info_output, score_output]
)
return interface
if __name__ == "__main__":
logger.info("🚀 Starting MAXIMUM Flux Prompt Optimizer")
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)