Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,794 Bytes
ce98582 30c8cdc cf7819d 30c8cdc 3f0776a 30c8cdc 3f0776a ce98582 3f0776a 30c8cdc cf7819d 30c8cdc 3f0776a ce98582 3f0776a 6a59263 ce98582 6a59263 ce98582 6a59263 ce98582 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c ce98582 6a59263 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c ce98582 6a59263 d8ac97c 6a59263 ce98582 6a59263 ce98582 6a59263 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c 6a59263 ce98582 6a59263 d8ac97c ce98582 6a59263 d8ac97c ce98582 6a59263 d8ac97c ce98582 6a59263 ce98582 6a59263 d8ac97c 6a59263 ce98582 6a59263 ce98582 6a59263 d8ac97c 6a59263 d8ac97c ce98582 6a59263 d8ac97c ce98582 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c ce98582 6a59263 d8ac97c 6a59263 ce98582 6a59263 ce98582 6a59263 ce98582 6a59263 d8ac97c 6a59263 ce98582 6a59263 d8ac97c 6a59263 ce98582 6a59263 ce98582 6a59263 ce98582 6a59263 d8ac97c 6a59263 ce98582 6a59263 ce98582 6a59263 ce98582 6a59263 d8ac97c 6a59263 d8ac97c 6a59263 30c8cdc 6a59263 30c8cdc 3f0776a 6a59263 30c8cdc 3f0776a 30c8cdc b3f99d4 3f0776a 30c8cdc cf7819d 3f0776a 30c8cdc 3f0776a 30c8cdc 3f0776a 30c8cdc ce98582 3f0776a 30c8cdc 3f0776a cf7819d 6a59263 30c8cdc 3f0776a b3f99d4 3f0776a 30c8cdc b3f99d4 30c8cdc 3f0776a b3f99d4 30c8cdc 3f0776a 30c8cdc 6a59263 d8ac97c 6a59263 ce98582 6a59263 ce98582 6a59263 30c8cdc 3f0776a ce98582 3f0776a 6a59263 ce98582 cf7819d 6a59263 d8ac97c 6a59263 3f0776a 6a59263 d8ac97c 6a59263 ce98582 30c8cdc 6a59263 d8ac97c 6a59263 30c8cdc ce98582 30c8cdc 6a59263 b3f99d4 3f0776a 6a59263 3f0776a 6a59263 b3f99d4 6a59263 b3f99d4 6a59263 b3f99d4 6a59263 b3f99d4 30c8cdc 3f0776a 6a59263 30c8cdc cf7819d 6a59263 ce98582 30c8cdc 6a59263 ce98582 30c8cdc ce98582 6a59263 ce98582 6a59263 30c8cdc ce98582 30c8cdc 6a59263 ce98582 6a59263 30c8cdc ce98582 30c8cdc ce98582 30c8cdc 6a59263 ce98582 6a59263 ce98582 6a59263 ce98582 6a59263 ce98582 30c8cdc ce98582 6a59263 ce98582 30c8cdc cf7819d ce98582 6a59263 ce98582 30c8cdc 6a59263 ce98582 30c8cdc 6a59263 30c8cdc 6a59263 30c8cdc 6a59263 ce98582 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c 6a59263 d8ac97c 30c8cdc 6a59263 ce98582 30c8cdc 6a59263 30c8cdc b3f99d4 30c8cdc ce98582 6a59263 ce98582 b3f99d4 30c8cdc 6a59263 30c8cdc cf7819d ce98582 6a59263 ce98582 6a59263 ce98582 6a59263 30c8cdc 6a59263 d8ac97c ce98582 30c8cdc 3f0776a ce98582 30c8cdc 6a59263 30c8cdc cf7819d 30c8cdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
import spaces
import gradio as gr
import torch
from PIL import Image
import numpy as np
from clip_interrogator import Config, Interrogator
import logging
import os
import warnings
from datetime import datetime
import gc
import re
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
DEVICE = get_device()
class MaximumFluxAnalyzer:
"""
Maximum depth analysis engine - extracts EVERYTHING possible from images
"""
def __init__(self):
self.forbidden_elements = ["++", "weights", "white background [en dev]"]
# EXPANDED VOCABULARIES FOR MAXIMUM DETECTION
self.age_keywords = {
"elderly": ["old", "elderly", "aged", "senior", "mature", "weathered", "wrinkled", "gray", "grey", "white hair", "silver", "graying", "ancient", "vintage"],
"middle": ["middle-aged", "adult", "grown", "middle", "forties", "fifties"],
"young": ["young", "youth", "teenage", "boy", "girl", "child", "kid", "adolescent"]
}
self.facial_features = {
"beard_full": ["beard", "bearded", "facial hair", "full beard", "thick beard", "heavy beard"],
"beard_color": ["gray beard", "grey beard", "silver beard", "white beard", "salt pepper", "graying beard"],
"mustache": ["mustache", "moustache", "facial hair"],
"glasses": ["glasses", "spectacles", "eyeglasses", "wire-frame", "rimmed glasses", "reading glasses"],
"eyes": ["eyes", "gaze", "stare", "looking", "piercing", "intense", "deep eyes"],
"wrinkles": ["wrinkled", "lines", "aged", "weathered", "creased"],
"expression": ["serious", "contemplative", "thoughtful", "stern", "wise", "solemn"]
}
self.religious_cultural = {
"jewish": ["jewish", "orthodox", "hasidic", "rabbi", "religious", "traditional", "ceremonial"],
"hat_types": ["hat", "cap", "yarmulke", "kippah", "black hat", "traditional hat", "religious headwear"],
"clothing": ["suit", "jacket", "formal", "black clothing", "traditional dress", "religious attire"]
}
self.hair_descriptors = {
"color": ["gray", "grey", "silver", "white", "black", "brown", "blonde", "salt and pepper"],
"texture": ["curly", "wavy", "straight", "thick", "thin", "coarse", "fine"],
"style": ["long", "short", "receding", "balding", "full head"]
}
self.setting_environments = {
"indoor": ["indoor", "inside", "interior", "room", "office", "home", "building"],
"formal": ["formal setting", "office", "meeting room", "conference", "official"],
"religious": ["synagogue", "temple", "religious", "ceremonial", "sacred"],
"studio": ["studio", "backdrop", "professional", "photography studio"],
"casual": ["casual", "relaxed", "informal", "comfortable"]
}
self.lighting_types = {
"natural": ["natural light", "window light", "daylight", "sunlight"],
"artificial": ["artificial light", "lamp", "electric", "indoor lighting"],
"dramatic": ["dramatic", "contrast", "shadow", "chiaroscuro", "moody"],
"soft": ["soft", "gentle", "diffused", "even", "flattering"],
"harsh": ["harsh", "direct", "strong", "bright", "intense"]
}
self.composition_styles = {
"portrait": ["portrait", "headshot", "face", "facial", "close-up", "bust"],
"seated": ["sitting", "seated", "chair", "sitting down"],
"standing": ["standing", "upright", "vertical"],
"three_quarter": ["three quarter", "three-quarter", "angled", "turned"]
}
self.quality_adjectives = {
"age_based": {
"elderly": ["distinguished", "dignified", "venerable", "wise", "weathered", "experienced"],
"middle": ["professional", "mature", "confident", "established"],
"young": ["youthful", "fresh", "vibrant", "energetic"]
},
"cultural": ["traditional", "Orthodox", "religious", "ceremonial", "devout"],
"general": ["elegant", "refined", "sophisticated", "classic", "timeless"]
}
def extract_maximum_info(self, clip_fast, clip_classic, clip_best):
"""Combine all three CLIP analyses for maximum information extraction"""
# Combine all analyses
combined_text = f"{clip_fast} {clip_classic} {clip_best}".lower()
analysis = {
"age": None,
"age_confidence": 0,
"gender": None,
"facial_features": [],
"hair_description": [],
"clothing_items": [],
"cultural_religious": [],
"setting": None,
"lighting": None,
"composition": None,
"mood": None,
"technical_suggestions": {}
}
# DEEP AGE DETECTION
age_scores = {"elderly": 0, "middle": 0, "young": 0}
for age_type, keywords in self.age_keywords.items():
for keyword in keywords:
if keyword in combined_text:
age_scores[age_type] += 1
if max(age_scores.values()) > 0:
analysis["age"] = max(age_scores, key=age_scores.get)
analysis["age_confidence"] = age_scores[analysis["age"]]
# GENDER DETECTION
if any(word in combined_text for word in ["man", "male", "gentleman", "guy", "he", "his"]):
analysis["gender"] = "man"
elif any(word in combined_text for word in ["woman", "female", "lady", "she", "her"]):
analysis["gender"] = "woman"
# COMPREHENSIVE FACIAL FEATURES
if any(word in combined_text for word in self.facial_features["beard_full"]):
if any(word in combined_text for word in self.facial_features["beard_color"]):
analysis["facial_features"].append("silver beard")
else:
analysis["facial_features"].append("full beard")
if any(word in combined_text for word in self.facial_features["glasses"]):
analysis["facial_features"].append("wire-frame glasses")
if any(word in combined_text for word in self.facial_features["wrinkles"]):
analysis["facial_features"].append("weathered features")
# HAIR ANALYSIS
hair_colors = [color for color in self.hair_descriptors["color"] if color in combined_text]
if hair_colors:
analysis["hair_description"].extend(hair_colors)
# CULTURAL/RELIGIOUS DETECTION
if any(word in combined_text for word in self.religious_cultural["jewish"]):
analysis["cultural_religious"].append("Orthodox Jewish")
if any(word in combined_text for word in self.religious_cultural["hat_types"]):
analysis["clothing_items"].append("traditional black hat")
if any(word in combined_text for word in self.religious_cultural["clothing"]):
analysis["clothing_items"].append("formal religious attire")
# ENHANCED SETTING DETECTION
setting_scores = {}
for setting_type, keywords in self.setting_environments.items():
score = sum(1 for keyword in keywords if keyword in combined_text)
if score > 0:
setting_scores[setting_type] = score
if setting_scores:
analysis["setting"] = max(setting_scores, key=setting_scores.get)
# LIGHTING ANALYSIS
lighting_detected = []
for light_type, keywords in self.lighting_types.items():
if any(keyword in combined_text for keyword in keywords):
lighting_detected.append(light_type)
if lighting_detected:
analysis["lighting"] = lighting_detected[0] # Take first/strongest match
# COMPOSITION DETECTION
for comp_type, keywords in self.composition_styles.items():
if any(keyword in combined_text for keyword in keywords):
analysis["composition"] = comp_type
break
# TECHNICAL SUGGESTIONS BASED ON ANALYSIS
if analysis["composition"] == "portrait":
analysis["technical_suggestions"] = {
"lens": "85mm lens",
"aperture": "f/2.8 aperture",
"camera": "Shot on Phase One XF"
}
elif analysis["composition"] == "seated":
analysis["technical_suggestions"] = {
"lens": "85mm lens",
"aperture": "f/4 aperture",
"camera": "Shot on Phase One"
}
else:
analysis["technical_suggestions"] = {
"lens": "50mm lens",
"aperture": "f/2.8 aperture",
"camera": "Shot on Phase One"
}
return analysis
def build_maximum_flux_prompt(self, analysis, original_clips):
"""Build the most detailed Flux prompt possible"""
components = []
# 1. INTELLIGENT ARTICLE SELECTION
if analysis["cultural_religious"] and analysis["age"]:
# "An elderly Orthodox Jewish man"
article = "An" if analysis["age"] == "elderly" else "A"
elif analysis["gender"]:
article = "A"
else:
article = "A"
components.append(article)
# 2. CONTEXT-AWARE ADJECTIVES (max 2-3 per Flux rules)
adjectives = []
if analysis["age"] and analysis["age"] in self.quality_adjectives["age_based"]:
adjectives.extend(self.quality_adjectives["age_based"][analysis["age"]][:2])
if analysis["cultural_religious"]:
adjectives.extend(self.quality_adjectives["cultural"][:1])
if not adjectives:
adjectives = self.quality_adjectives["general"][:2]
# Limit to 2-3 adjectives as per Flux rules
components.extend(adjectives[:2])
# 3. ENHANCED SUBJECT DESCRIPTION
subject_parts = []
if analysis["cultural_religious"]:
subject_parts.extend(analysis["cultural_religious"])
if analysis["age"] and analysis["age"] != "middle":
subject_parts.append(analysis["age"])
if analysis["gender"]:
subject_parts.append(analysis["gender"])
else:
subject_parts.append("person")
main_subject = " ".join(subject_parts)
components.append(main_subject)
# 4. DETAILED FACIAL FEATURES
if analysis["facial_features"]:
feature_desc = "with " + " and ".join(analysis["facial_features"])
components.append(feature_desc)
# 5. CLOTHING AND ACCESSORIES
if analysis["clothing_items"]:
clothing_desc = "wearing " + " and ".join(analysis["clothing_items"])
components.append(clothing_desc)
# 6. ACTION/POSE (based on composition)
action_map = {
"seated": "seated in contemplative pose",
"standing": "standing with dignified presence",
"portrait": "captured in intimate portrait style",
"three_quarter": "positioned in three-quarter view"
}
if analysis["composition"]:
action = action_map.get(analysis["composition"], "positioned thoughtfully")
else:
action = "positioned with natural composure"
components.append(action)
# 7. ENHANCED ENVIRONMENTAL CONTEXT
setting_descriptions = {
"indoor": "in a warmly lit indoor environment",
"formal": "in a professional formal setting",
"religious": "in a traditional religious space",
"studio": "in a controlled studio environment",
"casual": "in a comfortable informal setting"
}
if analysis["setting"]:
context = setting_descriptions.get(analysis["setting"], "in a thoughtfully composed environment")
else:
context = "within a carefully arranged scene"
components.append(context)
# 8. SOPHISTICATED LIGHTING DESCRIPTION
lighting_descriptions = {
"natural": "bathed in gentle natural lighting that enhances facial texture and depth",
"dramatic": "illuminated by dramatic lighting that creates compelling shadows and highlights",
"soft": "softly lit to emphasize character and warmth",
"artificial": "under controlled artificial lighting for optimal detail capture"
}
if analysis["lighting"]:
lighting_desc = lighting_descriptions.get(analysis["lighting"], "with professional lighting that emphasizes facial features and texture")
else:
lighting_desc = "captured with sophisticated portrait lighting that brings out intricate facial details"
components.append(lighting_desc)
# 9. TECHNICAL SPECIFICATIONS
tech_parts = []
if analysis["technical_suggestions"]:
tech_parts.append(analysis["technical_suggestions"]["camera"])
tech_parts.append(analysis["technical_suggestions"]["lens"])
tech_parts.append(analysis["technical_suggestions"]["aperture"])
else:
tech_parts = ["Shot on Phase One", "85mm lens", "f/2.8 aperture"]
components.append(", ".join(tech_parts))
# 10. QUALITY MARKER
components.append("professional portrait photography")
# FINAL ASSEMBLY AND OPTIMIZATION
prompt = ", ".join(components)
# Clean up the prompt
prompt = re.sub(r'\s+', ' ', prompt) # Remove extra spaces
prompt = re.sub(r',\s*,', ',', prompt) # Remove double commas
prompt = prompt.replace(" ,", ",") # Fix spacing around commas
# Ensure proper capitalization
prompt = prompt[0].upper() + prompt[1:] if prompt else ""
return prompt
def calculate_maximum_score(self, prompt, analysis):
"""Calculate intelligence score based on depth of analysis"""
score = 0
max_possible = 100
# Structure compliance (10 points)
if prompt.startswith(("A", "An")):
score += 10
# Feature detection depth (20 points)
feature_score = len(analysis["facial_features"]) * 5
score += min(feature_score, 20)
# Cultural/contextual awareness (20 points)
if analysis["cultural_religious"]:
score += 15
if analysis["age"]:
score += 5
# Technical appropriateness (15 points)
if "85mm" in prompt and analysis["composition"] in ["portrait", "seated"]:
score += 15
elif "50mm" in prompt:
score += 10
# Lighting sophistication (15 points)
if "lighting" in prompt and len(prompt.split("lighting")[1].split(",")[0]) > 10:
score += 15
# Setting context (10 points)
if analysis["setting"]:
score += 10
# Forbidden elements check (10 points)
if not any(forbidden in prompt for forbidden in self.forbidden_elements):
score += 10
return min(score, max_possible)
class MaximumFluxOptimizer:
def __init__(self):
self.interrogator = None
self.analyzer = MaximumFluxAnalyzer()
self.usage_count = 0
self.device = DEVICE
self.is_initialized = False
def initialize_model(self):
if self.is_initialized:
return True
try:
config = Config(
clip_model_name="ViT-L-14/openai",
download_cache=True,
chunk_size=2048,
quiet=True,
device=self.device
)
self.interrogator = Interrogator(config)
self.is_initialized = True
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
return True
except Exception as e:
logger.error(f"Initialization error: {e}")
return False
def optimize_image(self, image):
if image is None:
return None
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
if image.mode != 'RGB':
image = image.convert('RGB')
max_size = 768 if self.device != "cpu" else 512
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
@spaces.GPU
def generate_maximum_prompt(self, image):
try:
if not self.is_initialized:
if not self.initialize_model():
return "β Model initialization failed.", "Please refresh and try again.", 0
if image is None:
return "β Please upload an image.", "No image provided.", 0
self.usage_count += 1
image = self.optimize_image(image)
if image is None:
return "β Image processing failed.", "Invalid image format.", 0
start_time = datetime.now()
# TRIPLE CLIP ANALYSIS FOR MAXIMUM INFORMATION
logger.info("Starting MAXIMUM analysis - Triple CLIP interrogation")
clip_fast = self.interrogator.interrogate_fast(image)
clip_classic = self.interrogator.interrogate_classic(image)
clip_best = self.interrogator.interrogate(image)
logger.info(f"CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
# MAXIMUM DEPTH ANALYSIS
deep_analysis = self.analyzer.extract_maximum_info(clip_fast, clip_classic, clip_best)
# BUILD MAXIMUM QUALITY FLUX PROMPT
optimized_prompt = self.analyzer.build_maximum_flux_prompt(deep_analysis, [clip_fast, clip_classic, clip_best])
# CALCULATE INTELLIGENCE SCORE
score = self.analyzer.calculate_maximum_score(optimized_prompt, deep_analysis)
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
# COMPREHENSIVE ANALYSIS REPORT
gpu_status = "β‘ ZeroGPU" if torch.cuda.is_available() else "π» CPU"
# Format detected elements
features = ", ".join(deep_analysis["facial_features"]) if deep_analysis["facial_features"] else "None detected"
cultural = ", ".join(deep_analysis["cultural_religious"]) if deep_analysis["cultural_religious"] else "None detected"
clothing = ", ".join(deep_analysis["clothing_items"]) if deep_analysis["clothing_items"] else "None detected"
analysis_info = f"""**MAXIMUM ANALYSIS COMPLETE**
**Processing:** {gpu_status} β’ {duration:.1f}s β’ Triple CLIP interrogation
**Intelligence Score:** {score}/100
**Analysis Confidence:** {deep_analysis.get("age_confidence", 0)} age indicators detected
**Generation:** #{self.usage_count}
**DEEP DETECTION RESULTS:**
β’ **Age Category:** {deep_analysis.get("age", "Unspecified").title()}
β’ **Cultural Context:** {cultural}
β’ **Facial Features:** {features}
β’ **Clothing/Accessories:** {clothing}
β’ **Setting:** {deep_analysis.get("setting", "Standard").title()}
β’ **Composition:** {deep_analysis.get("composition", "Standard").title()}
β’ **Lighting:** {deep_analysis.get("lighting", "Standard").title()}
**CLIP ANALYSIS SOURCES:**
β’ **Fast:** {clip_fast[:60]}...
β’ **Classic:** {clip_classic[:60]}...
β’ **Best:** {clip_best[:60]}...
**FLUX OPTIMIZATION:** Applied maximum depth analysis with Pariente AI research rules"""
return optimized_prompt, analysis_info, score
except Exception as e:
logger.error(f"Maximum generation error: {e}")
return f"β Error: {str(e)}", "Please try with a different image.", 0
optimizer = MaximumFluxOptimizer()
def process_maximum_analysis(image):
"""Maximum analysis wrapper"""
try:
prompt, info, score = optimizer.generate_maximum_prompt(image)
# Enhanced score display
if score >= 90:
color = "#10b981"
grade = "EXCELLENT"
elif score >= 80:
color = "#22c55e"
grade = "VERY GOOD"
elif score >= 70:
color = "#f59e0b"
grade = "GOOD"
elif score >= 60:
color = "#f97316"
grade = "FAIR"
else:
color = "#ef4444"
grade = "NEEDS WORK"
score_html = f'''
<div style="text-align: center; padding: 1.5rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 2px solid {color}; border-radius: 12px; margin: 1rem 0; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
<div style="font-size: 2.5rem; font-weight: 700; color: {color}; margin: 0;">{score}</div>
<div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 600;">{grade}</div>
<div style="font-size: 0.875rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em;">Maximum Intelligence Score</div>
</div>
'''
return prompt, info, score_html
except Exception as e:
logger.error(f"Maximum wrapper error: {e}")
return "β Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
def clear_outputs():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Maximum Intelligence Score</div></div>'
def create_interface():
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&display=swap');
.gradio-container {
max-width: 1400px !important;
margin: 0 auto !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
}
.main-header {
text-align: center;
padding: 2rem 0 3rem 0;
background: linear-gradient(135deg, #0f172a 0%, #1e293b 50%, #334155 100%);
color: white;
margin: -2rem -2rem 2rem -2rem;
border-radius: 0 0 24px 24px;
box-shadow: 0 10px 25px -5px rgba(0, 0, 0, 0.1);
}
.main-title {
font-size: 3rem !important;
font-weight: 800 !important;
margin: 0 0 0.5rem 0 !important;
letter-spacing: -0.025em !important;
background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 50%, #2563eb 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.subtitle {
font-size: 1.25rem !important;
font-weight: 400 !important;
opacity: 0.9 !important;
margin: 0 !important;
}
.prompt-output {
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
font-size: 14px !important;
line-height: 1.7 !important;
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
border: 1px solid #e2e8f0 !important;
border-radius: 16px !important;
padding: 2rem !important;
box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1) !important;
}
"""
with gr.Blocks(
theme=gr.themes.Soft(),
title="Maximum Flux Prompt Optimizer",
css=css
) as interface:
gr.HTML("""
<div class="main-header">
<div class="main-title">π§ Maximum Flux Optimizer</div>
<div class="subtitle">Triple CLIP Analysis β’ Maximum Intelligence β’ Zero Configuration</div>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## π¬ Maximum Analysis")
image_input = gr.Image(
label="Upload your image for maximum analysis",
type="pil",
height=450
)
analyze_btn = gr.Button(
"π MAXIMUM ANALYSIS",
variant="primary",
size="lg"
)
gr.Markdown("""
### Maximum Intelligence Engine
**Triple CLIP Interrogation:**
β’ Fast analysis for broad context
β’ Classic analysis for detailed features
β’ Best analysis for maximum depth
**Deep Feature Extraction:**
β’ Age, gender, cultural context
β’ Facial features, expressions, accessories
β’ Clothing, religious/cultural indicators
β’ Environmental setting and lighting
β’ Composition and technical optimization
**No configuration needed** - Maximum intelligence applied automatically.
""")
with gr.Column(scale=1):
gr.Markdown("## β‘ Maximum Result")
prompt_output = gr.Textbox(
label="Maximum Optimized Flux Prompt",
placeholder="Upload an image to see the maximum intelligence analysis...",
lines=10,
max_lines=15,
elem_classes=["prompt-output"],
show_copy_button=True
)
score_output = gr.HTML(
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Maximum Intelligence Score</div></div>'
)
info_output = gr.Markdown(value="")
clear_btn = gr.Button("ποΈ Clear Analysis", size="sm")
gr.Markdown("""
---
### π¬ Maximum Research Foundation
This system represents the absolute maximum in image analysis and Flux prompt optimization. Using triple CLIP interrogation
and deep feature extraction, it identifies every possible detail and applies research-validated Flux rules with maximum intelligence.
**Pariente AI Research Laboratory** β’ Maximum Intelligence β’ Research-Driven β’ Zero Compromise
""")
# Maximum event handlers
analyze_btn.click(
fn=process_maximum_analysis,
inputs=[image_input],
outputs=[prompt_output, info_output, score_output]
)
clear_btn.click(
fn=clear_outputs,
outputs=[prompt_output, info_output, score_output]
)
return interface
if __name__ == "__main__":
logger.info("π Starting MAXIMUM Flux Prompt Optimizer")
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |