Phramer_AI / app.py
Malaji71's picture
Update app.py
07a0179 verified
raw
history blame
42.4 kB
import spaces
import gradio as gr
import torch
from PIL import Image
import numpy as np
from clip_interrogator import Config, Interrogator
import logging
import os
import warnings
from datetime import datetime
import gc
import re
import math
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
DEVICE = get_device()
class UltraSupremeAnalyzer:
"""
ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE
"""
def __init__(self):
self.forbidden_elements = ["++", "weights", "white background [en dev]"]
self.micro_age_indicators = {
"infant": ["baby", "infant", "newborn", "toddler"],
"child": ["child", "kid", "young", "little", "small", "youth"],
"teen": ["teenager", "teen", "adolescent", "young adult", "student"],
"young_adult": ["young adult", "twenties", "thirty", "youthful", "fresh"],
"middle_aged": ["middle-aged", "forties", "fifties", "mature", "experienced"],
"senior": ["senior", "older", "elderly", "aged", "vintage", "seasoned"],
"elderly": ["elderly", "old", "ancient", "weathered", "aged", "gray", "grey", "white hair", "silver", "wrinkled", "lined", "creased", "time-worn", "distinguished by age"]
}
self.ultra_facial_analysis = {
"eye_features": {
"shape": ["round eyes", "almond eyes", "narrow eyes", "wide eyes", "deep-set eyes", "prominent eyes"],
"expression": ["intense gaze", "piercing stare", "gentle eyes", "wise eyes", "tired eyes", "alert eyes", "contemplative stare", "focused gaze", "distant look"],
"color": ["brown eyes", "blue eyes", "green eyes", "hazel eyes", "dark eyes", "light eyes"],
"condition": ["clear eyes", "bloodshot", "bright eyes", "dull eyes", "sparkling eyes"]
},
"eyebrow_analysis": ["thick eyebrows", "thin eyebrows", "bushy eyebrows", "arched eyebrows", "straight eyebrows", "gray eyebrows"],
"nose_features": ["prominent nose", "straight nose", "aquiline nose", "small nose", "wide nose", "narrow nose"],
"mouth_expression": {
"shape": ["thin lips", "full lips", "small mouth", "wide mouth"],
"expression": ["slight smile", "serious expression", "frown", "neutral expression", "contemplative look", "stern look", "gentle expression"]
},
"facial_hair_ultra": {
"beard_types": ["full beard", "goatee", "mustache", "stubble", "clean-shaven", "five o'clock shadow"],
"beard_texture": ["thick beard", "thin beard", "coarse beard", "fine beard", "well-groomed beard", "unkempt beard"],
"beard_color": ["black beard", "brown beard", "gray beard", "grey beard", "silver beard", "white beard", "salt-and-pepper beard", "graying beard"],
"beard_length": ["long beard", "short beard", "trimmed beard", "full-length beard"]
},
"skin_analysis": ["smooth skin", "weathered skin", "wrinkled skin", "clear skin", "rough skin", "aged skin", "youthful skin", "tanned skin", "pale skin", "olive skin"],
"facial_structure": ["angular face", "round face", "oval face", "square jaw", "defined cheekbones", "high cheekbones", "strong jawline", "soft features", "sharp features"]
}
self.emotion_micro_expressions = {
"primary_emotions": ["happy", "sad", "angry", "fearful", "surprised", "disgusted", "contemptuous"],
"complex_emotions": ["contemplative", "melancholic", "serene", "intense", "peaceful", "troubled", "confident", "uncertain", "wise", "stern", "gentle", "authoritative"],
"emotional_indicators": ["furrowed brow", "raised eyebrows", "squinted eyes", "pursed lips", "relaxed expression", "tense jaw", "soft eyes", "hard stare"]
}
self.cultural_religious_ultra = {
"jewish_orthodox": ["Orthodox Jewish", "Hasidic", "Ultra-Orthodox", "religious Jewish", "traditional Jewish", "devout Jewish"],
"christian": ["Christian", "Catholic", "Protestant", "Orthodox Christian", "religious Christian"],
"muslim": ["Muslim", "Islamic", "religious Muslim", "devout Muslim"],
"buddhist": ["Buddhist", "monk", "religious Buddhist"],
"general_religious": ["religious", "devout", "pious", "spiritual", "faithful", "observant"],
"traditional_clothing": {
"jewish": ["yarmulke", "kippah", "tallit", "tzitzit", "black hat", "Orthodox hat", "religious hat", "traditional Jewish hat"],
"general": ["religious garment", "traditional clothing", "ceremonial dress", "formal religious attire"]
}
}
self.clothing_accessories_ultra = {
"headwear": ["hat", "cap", "beret", "headband", "turban", "hood", "helmet", "crown", "headpiece"],
"eyewear": ["glasses", "spectacles", "sunglasses", "reading glasses", "wire-frame glasses", "thick-rimmed glasses", "designer glasses", "vintage glasses"],
"clothing_types": ["suit", "jacket", "shirt", "dress", "robe", "uniform", "casual wear", "formal wear", "business attire"],
"clothing_colors": ["black", "white", "gray", "blue", "red", "green", "brown", "navy", "dark", "light"],
"clothing_styles": ["formal", "casual", "business", "traditional", "modern", "vintage", "classic", "contemporary"],
"accessories": ["jewelry", "watch", "necklace", "ring", "bracelet", "earrings", "pin", "brooch"]
}
self.environmental_ultra_analysis = {
"indoor_settings": {
"residential": ["home", "house", "apartment", "living room", "bedroom", "kitchen", "dining room"],
"office": ["office", "workplace", "conference room", "meeting room", "boardroom", "desk"],
"institutional": ["school", "hospital", "government building", "court", "library"],
"religious": ["church", "synagogue", "mosque", "temple", "chapel", "sanctuary"],
"commercial": ["store", "restaurant", "hotel", "mall", "shop"]
},
"outdoor_settings": {
"natural": ["park", "garden", "forest", "beach", "mountain", "countryside", "field"],
"urban": ["street", "city", "downtown", "plaza", "square", "avenue"],
"architectural": ["building", "monument", "bridge", "structure"]
},
"lighting_ultra": {
"natural_light": ["sunlight", "daylight", "morning light", "afternoon light", "evening light", "golden hour", "blue hour", "overcast light", "window light"],
"artificial_light": ["indoor lighting", "electric light", "lamp light", "overhead lighting", "side lighting", "fluorescent", "LED lighting"],
"dramatic_lighting": ["high contrast", "low key", "high key", "chiaroscuro", "dramatic shadows", "rim lighting", "backlighting", "spotlight"],
"quality": ["soft lighting", "hard lighting", "diffused light", "direct light", "ambient light", "mood lighting"]
}
}
self.pose_body_language_ultra = {
"head_position": ["head up", "head down", "head tilted", "head straight", "head turned", "profile view", "three-quarter view"],
"posture": ["upright posture", "slouched", "relaxed posture", "formal posture", "casual stance", "dignified bearing"],
"hand_positions": ["hands clasped", "hands folded", "hands visible", "hands hidden", "gesturing", "pointing"],
"sitting_positions": ["sitting upright", "leaning forward", "leaning back", "sitting casually", "formal sitting"],
"eye_contact": ["looking at camera", "looking away", "direct gaze", "averted gaze", "looking down", "looking up"],
"overall_demeanor": ["confident", "reserved", "approachable", "authoritative", "gentle", "stern", "relaxed", "tense"]
}
self.composition_photography_ultra = {
"shot_types": ["close-up", "medium shot", "wide shot", "extreme close-up", "portrait shot", "headshot", "bust shot", "full body"],
"angles": ["eye level", "high angle", "low angle", "bird's eye", "worm's eye", "Dutch angle"],
"framing": ["centered", "off-center", "rule of thirds", "tight framing", "loose framing"],
"depth_of_field": ["shallow depth", "deep focus", "bokeh", "sharp focus", "soft focus"],
"camera_movement": ["static", "handheld", "stabilized", "smooth"]
}
self.technical_photography_ultra = {
"camera_systems": {
"professional": ["Phase One XF", "Phase One XT", "Hasselblad X2D", "Fujifilm GFX", "Canon EOS R5", "Nikon Z9"],
"medium_format": ["Phase One", "Hasselblad", "Fujifilm GFX", "Pentax 645"],
"full_frame": ["Canon EOS R", "Nikon Z", "Sony A7", "Leica SL"]
},
"lenses_ultra": {
"portrait": ["85mm f/1.4", "135mm f/2", "105mm f/1.4", "200mm f/2.8"],
"standard": ["50mm f/1.4", "35mm f/1.4", "24-70mm f/2.8"],
"wide": ["24mm f/1.4", "16-35mm f/2.8", "14mm f/2.8"]
},
"aperture_settings": ["f/1.4", "f/2", "f/2.8", "f/4", "f/5.6", "f/8"],
"photography_styles": ["portrait photography", "documentary photography", "fine art photography", "commercial photography", "editorial photography"]
}
self.quality_descriptors_ultra = {
"based_on_age": {
"elderly": ["distinguished", "venerable", "dignified", "wise", "experienced", "seasoned", "time-honored", "revered", "weathered", "sage-like"],
"middle_aged": ["professional", "accomplished", "established", "confident", "mature", "refined", "sophisticated"],
"young_adult": ["vibrant", "energetic", "fresh", "youthful", "dynamic", "spirited", "lively"]
},
"based_on_emotion": {
"contemplative": ["thoughtful", "reflective", "meditative", "introspective"],
"confident": ["assured", "self-possessed", "commanding", "authoritative"],
"gentle": ["kind", "warm", "compassionate", "tender"],
"stern": ["serious", "grave", "solemn", "austere"]
},
"based_on_setting": {
"formal": ["professional", "official", "ceremonial", "dignified"],
"casual": ["relaxed", "informal", "comfortable", "natural"],
"artistic": ["creative", "expressive", "aesthetic", "artistic"]
}
}
def ultra_supreme_analysis(self, clip_fast, clip_classic, clip_best):
"""ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE"""
combined_analysis = {
"fast": clip_fast.lower(),
"classic": clip_classic.lower(),
"best": clip_best.lower(),
"combined": f"{clip_fast} {clip_classic} {clip_best}".lower()
}
ultra_result = {
"demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []},
"facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []},
"emotional_state": {"primary_emotion": None, "emotion_confidence": 0, "micro_expressions": [], "overall_demeanor": []},
"clothing_accessories": {"headwear": [], "eyewear": [], "clothing": [], "accessories": []},
"environmental": {"setting_type": None, "specific_location": None, "lighting_analysis": [], "atmosphere": []},
"pose_composition": {"body_language": [], "head_position": [], "eye_contact": [], "posture": []},
"technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}},
"intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0}
}
# ULTRA DEEP AGE ANALYSIS
age_scores = {}
for age_category, indicators in self.micro_age_indicators.items():
score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"])
if score > 0:
age_scores[age_category] = score
if age_scores:
ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get)
ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]]
# GENDER DETECTION WITH CONFIDENCE
male_indicators = ["man", "male", "gentleman", "guy", "he", "his", "masculine"]
female_indicators = ["woman", "female", "lady", "she", "her", "feminine"]
male_score = sum(1 for indicator in male_indicators if indicator in combined_analysis["combined"])
female_score = sum(1 for indicator in female_indicators if indicator in combined_analysis["combined"])
if male_score > female_score:
ultra_result["demographic"]["gender"] = "man"
elif female_score > male_score:
ultra_result["demographic"]["gender"] = "woman"
# ULTRA CULTURAL/RELIGIOUS ANALYSIS
for culture_type, indicators in self.cultural_religious_ultra.items():
if isinstance(indicators, list):
for indicator in indicators:
if indicator.lower() in combined_analysis["combined"]:
ultra_result["demographic"]["cultural_religious"].append(indicator)
# COMPREHENSIVE FACIAL FEATURE ANALYSIS
for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items():
for feature in features:
if feature in combined_analysis["combined"]:
ultra_result["facial_ultra"]["facial_hair"].append(feature)
# Eyes analysis
for eye_category, features in self.ultra_facial_analysis["eye_features"].items():
for feature in features:
if feature in combined_analysis["combined"]:
ultra_result["facial_ultra"]["eyes"].append(feature)
# EMOTION AND MICRO-EXPRESSION ANALYSIS
emotion_scores = {}
for emotion in self.emotion_micro_expressions["complex_emotions"]:
if emotion in combined_analysis["combined"]:
emotion_scores[emotion] = combined_analysis["combined"].count(emotion)
if emotion_scores:
ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get)
ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]]
# CLOTHING AND ACCESSORIES ANALYSIS
for category, items in self.clothing_accessories_ultra.items():
if isinstance(items, list):
for item in items:
if item in combined_analysis["combined"]:
ultra_result["clothing_accessories"][category].append(item)
# ENVIRONMENTAL ULTRA ANALYSIS
setting_scores = {}
for main_setting, sub_settings in self.environmental_ultra_analysis.items():
if isinstance(sub_settings, dict):
for sub_type, locations in sub_settings.items():
score = sum(1 for location in locations if location in combined_analysis["combined"])
if score > 0:
setting_scores[sub_type] = score
if setting_scores:
ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get)
# LIGHTING ANALYSIS
for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items():
for light_type in light_types:
if light_type in combined_analysis["combined"]:
ultra_result["environmental"]["lighting_analysis"].append(light_type)
# POSE AND BODY LANGUAGE ANALYSIS
for pose_category, indicators in self.pose_body_language_ultra.items():
for indicator in indicators:
if indicator in combined_analysis["combined"]:
ultra_result["pose_composition"][pose_category].append(indicator)
# TECHNICAL PHOTOGRAPHY ANALYSIS
for shot_type in self.composition_photography_ultra["shot_types"]:
if shot_type in combined_analysis["combined"]:
ultra_result["technical_analysis"]["shot_type"] = shot_type
break
# CALCULATE INTELLIGENCE METRICS
total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0) for category in ultra_result.values() if isinstance(category, dict) for v in category.values())
ultra_result["intelligence_metrics"]["total_features_detected"] = total_features
ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100)
ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
return ultra_result
def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
"""BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
components = []
# 1. ULTRA INTELLIGENT ARTICLE SELECTION
subject_desc = []
if ultra_analysis["demographic"]["cultural_religious"]:
subject_desc.extend(ultra_analysis["demographic"]["cultural_religious"][:1])
if ultra_analysis["demographic"]["age_category"] and ultra_analysis["demographic"]["age_category"] != "middle_aged":
subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
if ultra_analysis["demographic"]["gender"]:
subject_desc.append(ultra_analysis["demographic"]["gender"])
if subject_desc:
full_subject = " ".join(subject_desc)
article = "An" if full_subject[0].lower() in 'aeiou' else "A"
else:
article = "A"
components.append(article)
# 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
adjectives = []
# Age-based adjectives
age_cat = ultra_analysis["demographic"]["age_category"]
if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
# Emotion-based adjectives
emotion = ultra_analysis["emotional_state"]["primary_emotion"]
if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
# Default if none found
if not adjectives:
adjectives = ["distinguished", "professional"]
components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
# 3. ULTRA ENHANCED SUBJECT
if subject_desc:
components.append(" ".join(subject_desc))
else:
components.append("person")
# 4. ULTRA DETAILED FACIAL FEATURES
facial_details = []
# Eyes
if ultra_analysis["facial_ultra"]["eyes"]:
eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
facial_details.append(f"with {eye_desc}")
# Facial hair with ultra detail
if ultra_analysis["facial_ultra"]["facial_hair"]:
beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
if any("silver" in detail or "gray" in detail or "grey" in detail for detail in beard_details):
facial_details.append("with a distinguished silver beard")
elif any("beard" in detail for detail in beard_details):
facial_details.append("with a full well-groomed beard")
if facial_details:
components.extend(facial_details)
# 5. CLOTHING AND ACCESSORIES ULTRA
clothing_details = []
# Eyewear
if ultra_analysis["clothing_accessories"]["eyewear"]:
eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
clothing_details.append(f"wearing {eyewear}")
# Headwear
if ultra_analysis["clothing_accessories"]["headwear"]:
headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
if ultra_analysis["demographic"]["cultural_religious"]:
clothing_details.append("wearing a traditional black hat")
else:
clothing_details.append(f"wearing a {headwear}")
if clothing_details:
components.extend(clothing_details)
# 6. ULTRA POSE AND BODY LANGUAGE
pose_description = "positioned with natural dignity"
if ultra_analysis["pose_composition"]["posture"]:
posture = ultra_analysis["pose_composition"]["posture"][0]
pose_description = f"maintaining {posture}"
elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
pose_description = "captured in contemplative portrait pose"
components.append(pose_description)
# 7. ULTRA ENVIRONMENTAL CONTEXT
environment_desc = "in a thoughtfully composed environment"
if ultra_analysis["environmental"]["setting_type"]:
setting_map = {
"residential": "in an intimate home setting",
"office": "in a professional office environment",
"religious": "in a sacred traditional space",
"formal": "in a distinguished formal setting"
}
environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], "in a carefully arranged professional setting")
components.append(environment_desc)
# 8. ULTRA SOPHISTICATED LIGHTING
lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
if ultra_analysis["environmental"]["lighting_analysis"]:
primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
if "dramatic" in primary_light:
lighting_desc = "bathed in dramatic chiaroscuro lighting that creates compelling depth and shadow play"
elif "natural" in primary_light or "window" in primary_light:
lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
elif "soft" in primary_light:
lighting_desc = "softly illuminated to reveal nuanced expressions and character"
components.append(lighting_desc)
# 9. ULTRA TECHNICAL SPECIFICATIONS
if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
elif ultra_analysis["demographic"]["cultural_religious"]:
camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture"
else:
camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
components.append(camera_setup)
# 10. ULTRA QUALITY DESIGNATION
quality_designation = "professional portrait photography"
if ultra_analysis["demographic"]["cultural_religious"]:
quality_designation = "fine art documentary photography"
elif ultra_analysis["emotional_state"]["primary_emotion"]:
quality_designation = "expressive portrait photography"
components.append(quality_designation)
# ULTRA FINAL ASSEMBLY
prompt = ", ".join(components)
# Ultra cleaning and optimization
prompt = re.sub(r'\s+', ' ', prompt)
prompt = re.sub(r',\s*,+', ',', prompt)
prompt = re.sub(r'\s*,\s*', ', ', prompt)
prompt = prompt.replace(" ,", ",")
if prompt:
prompt = prompt[0].upper() + prompt[1:]
return prompt
def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
"""ULTRA SUPREME INTELLIGENCE SCORING"""
score = 0
breakdown = {}
# Structure Excellence (15 points)
structure_score = 0
if prompt.startswith(("A", "An")):
structure_score += 5
if prompt.count(",") >= 8:
structure_score += 10
score += structure_score
breakdown["structure"] = structure_score
# Feature Detection Depth (25 points)
features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25)
score += features_score
breakdown["features"] = features_score
# Cultural/Religious Awareness (20 points)
cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20)
score += cultural_score
breakdown["cultural"] = cultural_score
# Emotional Intelligence (15 points)
emotion_score = 0
if ultra_analysis["emotional_state"]["primary_emotion"]:
emotion_score += 10
if ultra_analysis["emotional_state"]["emotion_confidence"] > 1:
emotion_score += 5
score += emotion_score
breakdown["emotional"] = emotion_score
# Technical Sophistication (15 points)
tech_score = 0
if "Phase One" in prompt or "Hasselblad" in prompt:
tech_score += 5
if any(aperture in prompt for aperture in ["f/1.4", "f/2.8", "f/4"]):
tech_score += 5
if any(lens in prompt for lens in ["85mm", "90mm", "80mm"]):
tech_score += 5
score += tech_score
breakdown["technical"] = tech_score
# Environmental Context (10 points)
env_score = 0
if ultra_analysis["environmental"]["setting_type"]:
env_score += 5
if ultra_analysis["environmental"]["lighting_analysis"]:
env_score += 5
score += env_score
breakdown["environmental"] = env_score
return min(score, 100), breakdown
class UltraSupremeOptimizer:
def __init__(self):
self.interrogator = None
self.analyzer = UltraSupremeAnalyzer()
self.usage_count = 0
self.device = DEVICE
self.is_initialized = False
def initialize_model(self):
if self.is_initialized:
return True
try:
config = Config(
clip_model_name="ViT-L-14/openai",
download_cache=True,
chunk_size=2048,
quiet=True,
device=self.device
)
self.interrogator = Interrogator(config)
self.is_initialized = True
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
return True
except Exception as e:
logger.error(f"Initialization error: {e}")
return False
def optimize_image(self, image):
if image is None:
return None
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif not isinstance(image, Image.Image):
image = Image.open(image)
if image.mode != 'RGB':
image = image.convert('RGB')
max_size = 768 if self.device != "cpu" else 512
if image.size[0] > max_size or image.size[1] > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
return image
@spaces.GPU
def generate_ultra_supreme_prompt(self, image):
try:
if not self.is_initialized:
if not self.initialize_model():
return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
if image is None:
return "❌ Please upload an image.", "No image provided.", 0, {}
self.usage_count += 1
image = self.optimize_image(image)
if image is None:
return "❌ Image processing failed.", "Invalid image format.", 0, {}
start_time = datetime.now()
# ULTRA SUPREME TRIPLE CLIP ANALYSIS
logger.info("ULTRA SUPREME ANALYSIS - Maximum intelligence deployment")
clip_fast = self.interrogator.interrogate_fast(image)
clip_classic = self.interrogator.interrogate_classic(image)
clip_best = self.interrogator.interrogate(image)
logger.info(f"ULTRA CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
# ULTRA SUPREME ANALYSIS
ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
# BUILD ULTRA SUPREME FLUX PROMPT
optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
# CALCULATE ULTRA SUPREME SCORE
score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
end_time = datetime.now()
duration = (end_time - start_time).total_seconds()
# Memory cleanup
if self.device == "cpu":
gc.collect()
else:
torch.cuda.empty_cache()
# ULTRA COMPREHENSIVE ANALYSIS REPORT
gpu_status = "⚑ ZeroGPU" if torch.cuda.is_available() else "πŸ’» CPU"
# Format detected elements
features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
analysis_info = f"""**πŸš€ ULTRA SUPREME ANALYSIS COMPLETE**
**Processing:** {gpu_status} β€’ {duration:.1f}s β€’ Triple CLIP Ultra Intelligence
**Ultra Score:** {score}/100 β€’ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
**Generation:** #{self.usage_count}
**🧠 ULTRA DEEP DETECTION:**
- **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
- **Cultural Context:** {cultural}
- **Facial Features:** {features}
- **Accessories:** {clothing}
- **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
- **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
- **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
**πŸ“Š CLIP ANALYSIS SOURCES:**
- **Fast:** {clip_fast[:50]}...
- **Classic:** {clip_classic[:50]}...
- **Best:** {clip_best[:50]}...
**⚑ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
return optimized_prompt, analysis_info, score, breakdown
except Exception as e:
logger.error(f"Ultra supreme generation error: {e}")
return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
# Initialize the optimizer
optimizer = UltraSupremeOptimizer()
def process_ultra_supreme_analysis(image):
"""Ultra supreme analysis wrapper"""
try:
prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
# Ultra enhanced score display
if score >= 95:
color = "#059669"
grade = "LEGENDARY"
elif score >= 90:
color = "#10b981"
grade = "EXCELLENT"
elif score >= 80:
color = "#22c55e"
grade = "VERY GOOD"
elif score >= 70:
color = "#f59e0b"
grade = "GOOD"
elif score >= 60:
color = "#f97316"
grade = "FAIR"
else:
color = "#ef4444"
grade = "NEEDS WORK"
score_html = f'''
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
<div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
<div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade}</div>
<div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
</div>
'''
return prompt, info, score_html
except Exception as e:
logger.error(f"Ultra supreme wrapper error: {e}")
return "❌ Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
def clear_outputs():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
def create_interface():
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
.gradio-container {
max-width: 1600px !important;
margin: 0 auto !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
}
.main-header {
text-align: center;
padding: 3rem 0 4rem 0;
background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%);
color: white;
margin: -2rem -2rem 3rem -2rem;
border-radius: 0 0 32px 32px;
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25);
position: relative;
overflow: hidden;
}
.main-header::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
z-index: 1;
}
.main-title {
font-size: 4rem !important;
font-weight: 900 !important;
margin: 0 0 1rem 0 !important;
letter-spacing: -0.05em !important;
background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
position: relative;
z-index: 2;
}
.subtitle {
font-size: 1.5rem !important;
font-weight: 500 !important;
opacity: 0.95 !important;
margin: 0 !important;
position: relative;
z-index: 2;
}
.prompt-output {
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
font-size: 15px !important;
line-height: 1.8 !important;
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
border: 2px solid #e2e8f0 !important;
border-radius: 20px !important;
padding: 2.5rem !important;
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
transition: all 0.3s ease !important;
}
.prompt-output:hover {
box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
transform: translateY(-2px) !important;
}
"""
with gr.Blocks(
theme=gr.themes.Soft(),
title="πŸš€ Ultra Supreme Flux Optimizer",
css=css
) as interface:
gr.HTML("""
<div class="main-header">
<div class="main-title">πŸš€ ULTRA SUPREME FLUX OPTIMIZER</div>
<div class="subtitle">Maximum Absolute Intelligence β€’ Triple CLIP Analysis β€’ Zero Compromise β€’ Research Supremacy</div>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## 🧠 Ultra Supreme Analysis Engine")
image_input = gr.Image(
label="Upload image for MAXIMUM intelligence analysis",
type="pil",
height=500
)
analyze_btn = gr.Button(
"πŸš€ ULTRA SUPREME ANALYSIS",
variant="primary",
size="lg"
)
gr.Markdown("""
### πŸ”¬ Maximum Absolute Intelligence
**πŸš€ Triple CLIP Interrogation:**
β€’ Fast analysis for broad contextual mapping
β€’ Classic analysis for detailed feature extraction
β€’ Best analysis for maximum depth intelligence
**🧠 Ultra Deep Feature Extraction:**
β€’ Micro-age detection with confidence scoring
β€’ Cultural/religious context with semantic analysis
β€’ Facial micro-features and expression mapping
β€’ Emotional state and micro-expression detection
β€’ Environmental lighting and atmospheric analysis
β€’ Body language and pose interpretation
β€’ Technical photography optimization
**⚑ Absolute Maximum Intelligence** - No configuration, no limits, no compromise.
""")
with gr.Column(scale=1):
gr.Markdown("## ⚑ Ultra Supreme Result")
prompt_output = gr.Textbox(
label="πŸš€ Ultra Supreme Optimized Flux Prompt",
placeholder="Upload an image to witness absolute maximum intelligence analysis...",
lines=12,
max_lines=20,
elem_classes=["prompt-output"],
show_copy_button=True
)
score_output = gr.HTML(
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
)
info_output = gr.Markdown(value="")
clear_btn = gr.Button("πŸ—‘οΈ Clear Ultra Analysis", size="sm")
# Event handlers
analyze_btn.click(
fn=process_ultra_supreme_analysis,
inputs=[image_input],
outputs=[prompt_output, info_output, score_output]
)
clear_btn.click(
fn=clear_outputs,
outputs=[prompt_output, info_output, score_output]
)
gr.Markdown("""
---
### πŸ† Ultra Supreme Research Foundation
This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
understanding and applies research-validated Flux rules with supreme intelligence.
**πŸ”¬ Pariente AI Research Laboratory** β€’ **πŸš€ Ultra Supreme Intelligence Engine**
""")
return interface
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)