Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -284,164 +284,166 @@ class UltraSupremeAnalyzer:
|
|
284 |
ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
|
285 |
|
286 |
return ultra_result
|
|
|
287 |
def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
if ultra_analysis["demographic"]["cultural_religious"]:
|
295 |
-
subject_desc.extend(ultra_analysis["demographic"]["cultural_religious"][:1])
|
296 |
-
if ultra_analysis["demographic"]["age_category"] and ultra_analysis["demographic"]["age_category"] != "middle_aged":
|
297 |
-
subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
|
298 |
-
if ultra_analysis["demographic"]["gender"]:
|
299 |
-
subject_desc.append(ultra_analysis["demographic"]["gender"])
|
300 |
-
|
301 |
-
if subject_desc:
|
302 |
-
full_subject = " ".join(subject_desc)
|
303 |
-
article = "An" if full_subject[0].lower() in 'aeiou' else "A"
|
304 |
-
else:
|
305 |
-
article = "A"
|
306 |
-
components.append(article)
|
307 |
-
|
308 |
-
# 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
|
309 |
-
adjectives = []
|
310 |
-
|
311 |
-
# Age-based adjectives
|
312 |
-
age_cat = ultra_analysis["demographic"]["age_category"]
|
313 |
-
if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
|
314 |
-
adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
|
315 |
-
|
316 |
-
# Emotion-based adjectives
|
317 |
-
emotion = ultra_analysis["emotional_state"]["primary_emotion"]
|
318 |
-
if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
|
319 |
-
adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
|
320 |
-
|
321 |
-
# Default if none found
|
322 |
-
if not adjectives:
|
323 |
-
adjectives = ["distinguished", "professional"]
|
324 |
-
|
325 |
-
components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
|
326 |
-
|
327 |
-
# 3. ULTRA ENHANCED SUBJECT
|
328 |
-
if subject_desc:
|
329 |
-
components.append(" ".join(subject_desc))
|
330 |
-
else:
|
331 |
-
components.append("person")
|
332 |
-
|
333 |
-
# 4. ULTRA DETAILED FACIAL FEATURES
|
334 |
-
facial_details = []
|
335 |
-
|
336 |
-
# Eyes
|
337 |
-
if ultra_analysis["facial_ultra"]["eyes"]:
|
338 |
-
eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
|
339 |
-
facial_details.append(f"with {eye_desc}")
|
340 |
-
|
341 |
-
# Facial hair with ultra detail
|
342 |
-
if ultra_analysis["facial_ultra"]["facial_hair"]:
|
343 |
-
beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
|
344 |
-
if any("silver" in detail or "gray" in detail or "grey" in detail for detail in beard_details):
|
345 |
-
facial_details.append("with a distinguished silver beard")
|
346 |
-
elif any("beard" in detail for detail in beard_details):
|
347 |
-
facial_details.append("with a full well-groomed beard")
|
348 |
-
|
349 |
-
if facial_details:
|
350 |
-
components.extend(facial_details)
|
351 |
-
|
352 |
-
# 5. CLOTHING AND ACCESSORIES ULTRA
|
353 |
-
clothing_details = []
|
354 |
-
|
355 |
-
# Eyewear
|
356 |
-
if ultra_analysis["clothing_accessories"]["eyewear"]:
|
357 |
-
eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
|
358 |
-
clothing_details.append(f"wearing {eyewear}")
|
359 |
-
|
360 |
-
# Headwear
|
361 |
-
if ultra_analysis["clothing_accessories"]["headwear"]:
|
362 |
-
headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
|
363 |
if ultra_analysis["demographic"]["cultural_religious"]:
|
364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
else:
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
"
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
|
444 |
-
|
445 |
|
446 |
score = 0
|
447 |
breakdown = {}
|
@@ -549,7 +551,8 @@ class UltraSupremeOptimizer:
|
|
549 |
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
550 |
|
551 |
return image
|
552 |
-
|
|
|
553 |
def generate_ultra_supreme_prompt(self, image):
|
554 |
try:
|
555 |
if not self.is_initialized:
|
|
|
284 |
ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
|
285 |
|
286 |
return ultra_result
|
287 |
+
|
288 |
def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
|
289 |
+
"""BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
|
290 |
+
|
291 |
+
components = []
|
292 |
+
|
293 |
+
# 1. ULTRA INTELLIGENT ARTICLE SELECTION
|
294 |
+
subject_desc = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
if ultra_analysis["demographic"]["cultural_religious"]:
|
296 |
+
subject_desc.extend(ultra_analysis["demographic"]["cultural_religious"][:1])
|
297 |
+
if ultra_analysis["demographic"]["age_category"] and ultra_analysis["demographic"]["age_category"] != "middle_aged":
|
298 |
+
subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
|
299 |
+
if ultra_analysis["demographic"]["gender"]:
|
300 |
+
subject_desc.append(ultra_analysis["demographic"]["gender"])
|
301 |
+
|
302 |
+
if subject_desc:
|
303 |
+
full_subject = " ".join(subject_desc)
|
304 |
+
article = "An" if full_subject[0].lower() in 'aeiou' else "A"
|
305 |
else:
|
306 |
+
article = "A"
|
307 |
+
components.append(article)
|
308 |
+
|
309 |
+
# 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
|
310 |
+
adjectives = []
|
311 |
+
|
312 |
+
# Age-based adjectives
|
313 |
+
age_cat = ultra_analysis["demographic"]["age_category"]
|
314 |
+
if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
|
315 |
+
adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
|
316 |
+
|
317 |
+
# Emotion-based adjectives
|
318 |
+
emotion = ultra_analysis["emotional_state"]["primary_emotion"]
|
319 |
+
if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
|
320 |
+
adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
|
321 |
+
|
322 |
+
# Default if none found
|
323 |
+
if not adjectives:
|
324 |
+
adjectives = ["distinguished", "professional"]
|
325 |
+
|
326 |
+
components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
|
327 |
+
|
328 |
+
# 3. ULTRA ENHANCED SUBJECT
|
329 |
+
if subject_desc:
|
330 |
+
components.append(" ".join(subject_desc))
|
331 |
+
else:
|
332 |
+
components.append("person")
|
333 |
+
|
334 |
+
# 4. ULTRA DETAILED FACIAL FEATURES
|
335 |
+
facial_details = []
|
336 |
+
|
337 |
+
# Eyes
|
338 |
+
if ultra_analysis["facial_ultra"]["eyes"]:
|
339 |
+
eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
|
340 |
+
facial_details.append(f"with {eye_desc}")
|
341 |
+
|
342 |
+
# Facial hair with ultra detail
|
343 |
+
if ultra_analysis["facial_ultra"]["facial_hair"]:
|
344 |
+
beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
|
345 |
+
if any("silver" in detail or "gray" in detail or "grey" in detail for detail in beard_details):
|
346 |
+
facial_details.append("with a distinguished silver beard")
|
347 |
+
elif any("beard" in detail for detail in beard_details):
|
348 |
+
facial_details.append("with a full well-groomed beard")
|
349 |
+
|
350 |
+
if facial_details:
|
351 |
+
components.extend(facial_details)
|
352 |
+
|
353 |
+
# 5. CLOTHING AND ACCESSORIES ULTRA
|
354 |
+
clothing_details = []
|
355 |
+
|
356 |
+
# Eyewear
|
357 |
+
if ultra_analysis["clothing_accessories"]["eyewear"]:
|
358 |
+
eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
|
359 |
+
clothing_details.append(f"wearing {eyewear}")
|
360 |
+
|
361 |
+
# Headwear
|
362 |
+
if ultra_analysis["clothing_accessories"]["headwear"]:
|
363 |
+
headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
|
364 |
+
if ultra_analysis["demographic"]["cultural_religious"]:
|
365 |
+
clothing_details.append("wearing a traditional black hat")
|
366 |
+
else:
|
367 |
+
clothing_details.append(f"wearing a {headwear}")
|
368 |
+
|
369 |
+
if clothing_details:
|
370 |
+
components.extend(clothing_details)
|
371 |
+
|
372 |
+
# 6. ULTRA POSE AND BODY LANGUAGE
|
373 |
+
pose_description = "positioned with natural dignity"
|
374 |
+
|
375 |
+
if ultra_analysis["pose_composition"]["posture"]:
|
376 |
+
posture = ultra_analysis["pose_composition"]["posture"][0]
|
377 |
+
pose_description = f"maintaining {posture}"
|
378 |
+
elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
|
379 |
+
pose_description = "captured in contemplative portrait pose"
|
380 |
+
|
381 |
+
components.append(pose_description)
|
382 |
+
|
383 |
+
# 7. ULTRA ENVIRONMENTAL CONTEXT
|
384 |
+
environment_desc = "in a thoughtfully composed environment"
|
385 |
+
|
386 |
+
if ultra_analysis["environmental"]["setting_type"]:
|
387 |
+
setting_map = {
|
388 |
+
"residential": "in an intimate home setting",
|
389 |
+
"office": "in a professional office environment",
|
390 |
+
"religious": "in a sacred traditional space",
|
391 |
+
"formal": "in a distinguished formal setting"
|
392 |
+
}
|
393 |
+
environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], "in a carefully arranged professional setting")
|
394 |
+
|
395 |
+
components.append(environment_desc)
|
396 |
+
|
397 |
+
# 8. ULTRA SOPHISTICATED LIGHTING
|
398 |
+
lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
|
399 |
+
|
400 |
+
if ultra_analysis["environmental"]["lighting_analysis"]:
|
401 |
+
primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
|
402 |
+
if "dramatic" in primary_light:
|
403 |
+
lighting_desc = "bathed in dramatic chiaroscuro lighting that creates compelling depth and shadow play"
|
404 |
+
elif "natural" in primary_light or "window" in primary_light:
|
405 |
+
lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
|
406 |
+
elif "soft" in primary_light:
|
407 |
+
lighting_desc = "softly illuminated to reveal nuanced expressions and character"
|
408 |
+
|
409 |
+
components.append(lighting_desc)
|
410 |
+
|
411 |
+
# 9. ULTRA TECHNICAL SPECIFICATIONS
|
412 |
+
if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
|
413 |
+
camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
|
414 |
+
elif ultra_analysis["demographic"]["cultural_religious"]:
|
415 |
+
camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture"
|
416 |
+
else:
|
417 |
+
camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
|
418 |
+
|
419 |
+
components.append(camera_setup)
|
420 |
+
|
421 |
+
# 10. ULTRA QUALITY DESIGNATION
|
422 |
+
quality_designation = "professional portrait photography"
|
423 |
+
|
424 |
+
if ultra_analysis["demographic"]["cultural_religious"]:
|
425 |
+
quality_designation = "fine art documentary photography"
|
426 |
+
elif ultra_analysis["emotional_state"]["primary_emotion"]:
|
427 |
+
quality_designation = "expressive portrait photography"
|
428 |
+
|
429 |
+
components.append(quality_designation)
|
430 |
+
|
431 |
+
# ULTRA FINAL ASSEMBLY
|
432 |
+
prompt = ", ".join(components)
|
433 |
+
|
434 |
+
# Ultra cleaning and optimization
|
435 |
+
prompt = re.sub(r'\s+', ' ', prompt)
|
436 |
+
prompt = re.sub(r',\s*,+', ',', prompt)
|
437 |
+
prompt = re.sub(r'\s*,\s*', ', ', prompt)
|
438 |
+
prompt = prompt.replace(" ,", ",")
|
439 |
+
|
440 |
+
if prompt:
|
441 |
+
prompt = prompt[0].upper() + prompt[1:]
|
442 |
+
|
443 |
+
return prompt
|
444 |
+
|
445 |
def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
|
446 |
+
"""ULTRA SUPREME INTELLIGENCE SCORING"""
|
447 |
|
448 |
score = 0
|
449 |
breakdown = {}
|
|
|
551 |
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
552 |
|
553 |
return image
|
554 |
+
|
555 |
+
@spaces.GPU
|
556 |
def generate_ultra_supreme_prompt(self, image):
|
557 |
try:
|
558 |
if not self.is_initialized:
|