Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Frame 0 Laboratory for MIA - Main Gradio Interface | |
FLUX Prompt Optimizer with clean, professional interface | |
""" | |
import gradio as gr | |
import logging | |
import warnings | |
import os | |
from typing import Tuple | |
from config import APP_CONFIG, ENVIRONMENT | |
from processor import process_image_simple, flux_optimizer | |
from utils import setup_logging, clean_memory | |
# Configure environment | |
warnings.filterwarnings("ignore", category=FutureWarning) | |
warnings.filterwarnings("ignore", category=UserWarning) | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# Setup logging | |
setup_logging(ENVIRONMENT["log_level"]) | |
logger = logging.getLogger(__name__) | |
def process_image_interface(image) -> Tuple[str, str, str]: | |
""" | |
Main interface function for image processing | |
Args: | |
image: Input image from Gradio interface | |
Returns: | |
Tuple of (prompt, analysis_report, score_html) | |
""" | |
try: | |
if image is None: | |
return ( | |
"Please upload an image to analyze", | |
"No image provided for analysis.", | |
'<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>' | |
) | |
logger.info("Processing image through interface") | |
prompt, report, score_html = process_image_simple(image) | |
return prompt, report, score_html | |
except Exception as e: | |
logger.error(f"Interface processing error: {e}", exc_info=True) | |
error_msg = f"Processing failed: {str(e)}" | |
return ( | |
"β Processing failed", | |
f"**Error:** {error_msg}\n\nPlease try again with a different image.", | |
'<div style="text-align: center; padding: 1rem; color: red;"><div style="font-size: 2rem;">0</div><div style="font-size: 0.875rem;">Error</div></div>' | |
) | |
def clear_interface() -> Tuple[str, str, str]: | |
"""Clear all interface outputs and free memory""" | |
clean_memory() | |
logger.info("Interface cleared") | |
return ( | |
"", | |
"", | |
'<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>' | |
) | |
def get_stats_info() -> str: | |
"""Get current processing statistics""" | |
try: | |
stats = flux_optimizer.get_stats() | |
stats_text = f"""**Processing Statistics:** | |
β’ **Total Images:** {stats['total_processed']} | |
β’ **Successful:** {stats['successful_analyses']} | |
β’ **Failed:** {stats['failed_analyses']} | |
β’ **Success Rate:** {stats['success_rate']:.1%} | |
β’ **Average Time:** {stats['average_processing_time']:.1f}s | |
β’ **Device:** {stats['device_info']['device'].upper()} | |
""" | |
return stats_text | |
except Exception as e: | |
logger.error(f"Stats retrieval error: {e}") | |
return "Statistics unavailable" | |
def create_interface(): | |
"""Create the main Gradio interface""" | |
# Custom CSS for clean, professional look | |
css = """ | |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&display=swap'); | |
.gradio-container { | |
max-width: 1400px !important; | |
margin: 0 auto !important; | |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important; | |
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important; | |
} | |
/* Text visibility fixes */ | |
.markdown-text, .markdown-text *, | |
.prose, .prose *, | |
.gr-markdown, .gr-markdown *, | |
div[class*="markdown"], div[class*="markdown"] * { | |
color: #1f2937 !important; | |
} | |
.markdown-text h1, .markdown-text h2, .markdown-text h3, | |
.prose h1, .prose h2, .prose h3, | |
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 { | |
color: #111827 !important; | |
font-weight: 600 !important; | |
} | |
.markdown-text p, .markdown-text li, | |
.prose p, .prose li, | |
.gr-markdown p, .gr-markdown li { | |
color: #374151 !important; | |
} | |
.markdown-text strong, .prose strong, .gr-markdown strong { | |
color: #111827 !important; | |
font-weight: 600 !important; | |
} | |
/* Header styling */ | |
.main-header { | |
text-align: center; | |
padding: 2.5rem 0 3rem 0; | |
background: linear-gradient(135deg, #1e293b 0%, #334155 50%, #475569 100%); | |
color: white; | |
margin: -2rem -2rem 2rem -2rem; | |
border-radius: 0 0 24px 24px; | |
box-shadow: 0 10px 30px -5px rgba(0, 0, 0, 0.2); | |
} | |
.main-title { | |
font-size: 2.5rem !important; | |
font-weight: 700 !important; | |
margin: 0 0 0.5rem 0 !important; | |
letter-spacing: -0.025em !important; | |
color: #ffffff !important; | |
} | |
.subtitle { | |
font-size: 1.125rem !important; | |
font-weight: 400 !important; | |
opacity: 0.9 !important; | |
margin: 0 !important; | |
color: #cbd5e1 !important; | |
} | |
/* Prompt output styling */ | |
.prompt-output { | |
font-family: 'SF Mono', 'Monaco', 'Consolas', monospace !important; | |
font-size: 14px !important; | |
line-height: 1.6 !important; | |
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important; | |
border: 2px solid #e2e8f0 !important; | |
border-radius: 12px !important; | |
padding: 1.5rem !important; | |
box-shadow: 0 4px 15px -2px rgba(0, 0, 0, 0.08) !important; | |
transition: all 0.3s ease !important; | |
color: #1f2937 !important; | |
} | |
.prompt-output:hover { | |
box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.12) !important; | |
transform: translateY(-1px) !important; | |
} | |
/* Button styling */ | |
.gr-button-primary { | |
background: linear-gradient(135deg, #3b82f6 0%, #2563eb 100%) !important; | |
border: none !important; | |
color: white !important; | |
font-weight: 500 !important; | |
padding: 0.75rem 1.5rem !important; | |
border-radius: 8px !important; | |
transition: all 0.2s ease !important; | |
} | |
.gr-button-primary:hover { | |
background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%) !important; | |
transform: translateY(-1px) !important; | |
box-shadow: 0 4px 12px rgba(37, 99, 235, 0.3) !important; | |
} | |
.gr-button-secondary { | |
background: #f1f5f9 !important; | |
border: 1px solid #cbd5e1 !important; | |
color: #475569 !important; | |
font-weight: 500 !important; | |
border-radius: 8px !important; | |
} | |
.gr-button-secondary:hover { | |
background: #e2e8f0 !important; | |
border-color: #94a3b8 !important; | |
} | |
/* Image upload area */ | |
.gr-file-upload { | |
border: 2px dashed #cbd5e1 !important; | |
border-radius: 12px !important; | |
background: #f8fafc !important; | |
} | |
/* Info boxes */ | |
.info-box { | |
background: linear-gradient(135deg, #f0f9ff 0%, #e0f2fe 100%); | |
border: 1px solid #0284c7; | |
border-radius: 12px; | |
padding: 1rem; | |
margin: 1rem 0; | |
} | |
""" | |
with gr.Blocks( | |
theme=gr.themes.Soft( | |
primary_hue="blue", | |
secondary_hue="slate", | |
neutral_hue="slate" | |
), | |
title="Frame 0 Laboratory for MIA", | |
css=css | |
) as interface: | |
# Header | |
gr.HTML(""" | |
<div class="main-header"> | |
<div class="main-title">Frame 0 Laboratory for MIA</div> | |
<div class="subtitle">Advanced Image Analysis & FLUX Prompt Optimization</div> | |
</div> | |
""") | |
# Main interface | |
with gr.Row(): | |
# Left column - Input | |
with gr.Column(scale=1): | |
gr.Markdown("## Image Analysis") | |
image_input = gr.Image( | |
label="Upload Image for Analysis", | |
type="pil", | |
height=400 | |
) | |
with gr.Row(): | |
analyze_btn = gr.Button( | |
"π Analyze Image", | |
variant="primary", | |
size="lg" | |
) | |
clear_btn = gr.Button( | |
"ποΈ Clear", | |
variant="secondary", | |
size="lg" | |
) | |
# Information panel | |
gr.Markdown(""" | |
### How it works: | |
**1. Image Analysis:** Advanced AI models analyze your image to understand content, composition, and style. | |
**2. FLUX Optimization:** Applies proven rules for FLUX image generation including camera settings, lighting, and technical parameters. | |
**3. Quality Scoring:** Evaluates the optimized prompt across multiple dimensions for best results. | |
**Supported formats:** JPG, PNG, WebP up to 1024px | |
""") | |
# Statistics (collapsible) | |
with gr.Accordion("π Processing Stats", open=False): | |
stats_output = gr.Markdown(value="No processing completed yet.") | |
refresh_stats_btn = gr.Button("Refresh Stats", size="sm") | |
refresh_stats_btn.click( | |
fn=get_stats_info, | |
outputs=stats_output | |
) | |
# Right column - Output | |
with gr.Column(scale=1): | |
gr.Markdown("## Results") | |
# Score display | |
score_output = gr.HTML( | |
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>' | |
) | |
# Optimized prompt | |
prompt_output = gr.Textbox( | |
label="π― Optimized FLUX Prompt", | |
placeholder="Upload an image to generate an optimized prompt...", | |
lines=8, | |
max_lines=15, | |
elem_classes=["prompt-output"], | |
show_copy_button=True | |
) | |
# Analysis report | |
with gr.Accordion("π Detailed Analysis", open=True): | |
info_output = gr.Markdown(value="") | |
# Event handlers | |
analyze_btn.click( | |
fn=process_image_interface, | |
inputs=[image_input], | |
outputs=[prompt_output, info_output, score_output] | |
) | |
clear_btn.click( | |
fn=clear_interface, | |
outputs=[prompt_output, info_output, score_output] | |
) | |
# Footer | |
gr.Markdown(""" | |
--- | |
**Frame 0 Laboratory for MIA** β’ Advanced AI Research & Development | |
This tool uses state-of-the-art vision-language models to analyze images and generate optimized prompts | |
for FLUX image generation. The system applies proven optimization rules including camera configurations, | |
lighting setups, and technical parameters for best results. | |
""") | |
return interface | |
def main(): | |
"""Main application entry point""" | |
logger.info("Starting Frame 0 Laboratory for MIA") | |
# Create and launch interface | |
demo = create_interface() | |
# Launch configuration | |
launch_config = { | |
"server_name": "0.0.0.0", | |
"server_port": 7860, | |
"show_error": True, | |
"show_tips": True, | |
"enable_queue": True | |
} | |
# Add share option for Spaces | |
if ENVIRONMENT["is_spaces"]: | |
launch_config["share"] = False # Spaces handles sharing | |
else: | |
launch_config["share"] = True # Enable sharing for local | |
logger.info(f"Launching on port {launch_config['server_port']}") | |
demo.launch(**launch_config) | |
if __name__ == "__main__": | |
main() |