File size: 21,049 Bytes
05bb27a
3fe3e93
 
 
 
05bb27a
 
 
 
 
 
 
 
3fe3e93
05bb27a
 
 
3fe3e93
 
05bb27a
 
 
 
 
 
3fe3e93
 
05bb27a
 
 
 
 
 
 
 
3fe3e93
 
 
05bb27a
 
3fe3e93
05bb27a
3fe3e93
05bb27a
3fe3e93
05bb27a
 
 
3fe3e93
05bb27a
 
 
 
 
 
 
 
3fe3e93
05bb27a
3fe3e93
 
 
05bb27a
 
 
 
 
3fe3e93
05bb27a
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe3e93
 
05bb27a
 
 
3fe3e93
 
05bb27a
 
 
3fe3e93
05bb27a
 
 
 
3fe3e93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05bb27a
3fe3e93
 
 
 
 
 
05bb27a
 
3fe3e93
 
05bb27a
3fe3e93
 
05bb27a
 
 
3fe3e93
05bb27a
 
 
 
 
 
 
3fe3e93
 
 
 
05bb27a
 
3fe3e93
05bb27a
3fe3e93
05bb27a
 
3fe3e93
 
05bb27a
 
 
 
3fe3e93
05bb27a
 
 
 
3fe3e93
05bb27a
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe3e93
 
 
 
 
 
 
 
 
 
 
 
05bb27a
 
3fe3e93
 
 
 
 
 
 
 
 
 
 
 
05bb27a
 
 
 
 
 
3fe3e93
05bb27a
3fe3e93
 
05bb27a
 
 
 
3fe3e93
 
05bb27a
 
 
3fe3e93
05bb27a
3fe3e93
05bb27a
3fe3e93
05bb27a
3fe3e93
 
 
 
 
05bb27a
3fe3e93
 
 
 
05bb27a
3fe3e93
 
 
 
 
 
 
05bb27a
3fe3e93
05bb27a
 
 
3fe3e93
 
05bb27a
3fe3e93
 
 
 
 
 
 
05bb27a
 
 
3fe3e93
 
 
 
 
 
 
 
 
 
 
 
 
 
05bb27a
 
 
3fe3e93
05bb27a
 
3fe3e93
 
05bb27a
 
 
 
 
 
3fe3e93
05bb27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe3e93
 
05bb27a
 
 
 
3fe3e93
05bb27a
 
3fe3e93
05bb27a
 
3fe3e93
05bb27a
 
 
 
 
 
 
 
 
3fe3e93
 
 
05bb27a
3fe3e93
05bb27a
 
3fe3e93
 
05bb27a
3fe3e93
05bb27a
 
3fe3e93
 
 
 
 
 
 
05bb27a
3fe3e93
 
05bb27a
3fe3e93
 
 
 
05bb27a
 
3fe3e93
05bb27a
 
3fe3e93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05bb27a
 
3fe3e93
 
 
 
05bb27a
 
 
3fe3e93
05bb27a
 
 
3fe3e93
 
 
05bb27a
 
3fe3e93
 
 
 
 
 
 
05bb27a
3fe3e93
 
05bb27a
 
3fe3e93
 
05bb27a
3fe3e93
05bb27a
 
 
 
3fe3e93
05bb27a
 
 
3fe3e93
 
 
 
05bb27a
3fe3e93
 
05bb27a
 
3fe3e93
 
05bb27a
 
3fe3e93
05bb27a
3fe3e93
05bb27a
 
 
 
3fe3e93
05bb27a
 
 
 
3fe3e93
05bb27a
3fe3e93
 
05bb27a
3fe3e93
05bb27a
 
 
 
3fe3e93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05bb27a
 
3fe3e93
 
 
 
 
 
05bb27a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
"""
Main processing logic for Phramer AI
By Pariente AI, for MIA TV Series

Enhanced image analysis with professional cinematography integration and multi-engine optimization
"""

import logging
import time
from typing import Tuple, Dict, Any, Optional
from PIL import Image
from datetime import datetime

from config import APP_CONFIG, PROCESSING_CONFIG, get_device_config, PROFESSIONAL_PHOTOGRAPHY_CONFIG
from utils import (
    optimize_image, validate_image, apply_flux_rules, 
    calculate_prompt_score, get_score_grade, format_analysis_report,
    clean_memory, safe_execute, detect_scene_type_from_analysis,
    enhance_prompt_with_cinematography_knowledge
)
from models import analyze_image

logger = logging.getLogger(__name__)


class PhramerlAIOptimizer:
    """Main optimizer class for Phramer AI prompt generation with cinematography integration"""
    
    def __init__(self, model_name: str = None):
        self.model_name = model_name
        self.device_config = get_device_config()
        self.processing_stats = {
            "total_processed": 0,
            "successful_analyses": 0,
            "failed_analyses": 0,
            "average_processing_time": 0.0,
            "cinematography_enhancements": 0,
            "scene_types_detected": {}
        }
        
        logger.info(f"Phramer AI Optimizer initialized - Device: {self.device_config['device']}")
    
    def process_image(self, image: Any, analysis_type: str = "multiengine") -> Tuple[str, str, str, Dict[str, Any]]:
        """
        Complete image processing pipeline with cinematography enhancement
        
        Args:
            image: Input image (PIL, numpy array, or file path)
            analysis_type: Type of analysis ("multiengine", "cinematic", "flux")
            
        Returns:
            Tuple of (optimized_prompt, analysis_report, score_html, metadata)
        """
        start_time = time.time()
        metadata = {
            "processing_time": 0.0,
            "success": False,
            "model_used": self.model_name or "bagel-professional",
            "device": self.device_config["device"],
            "analysis_type": analysis_type,
            "cinematography_enhanced": False,
            "scene_type": "unknown",
            "error": None
        }
        
        try:
            # Step 1: Validate and optimize input image
            logger.info(f"Starting Phramer AI processing pipeline - Analysis type: {analysis_type}")
            
            if not validate_image(image):
                error_msg = "Invalid or unsupported image format"
                logger.error(error_msg)
                return self._create_error_response(error_msg, metadata)
            
            optimized_image = optimize_image(image)
            if optimized_image is None:
                error_msg = "Image optimization failed"
                logger.error(error_msg)
                return self._create_error_response(error_msg, metadata)
            
            logger.info(f"Image optimized to size: {optimized_image.size}")
            
            # Step 2: Enhanced image analysis with cinematography context
            logger.info("Running enhanced BAGEL analysis with cinematography integration...")
            analysis_success, analysis_result = safe_execute(
                analyze_image, 
                optimized_image, 
                self.model_name,
                analysis_type
            )
            
            if not analysis_success:
                error_msg = f"Enhanced image analysis failed: {analysis_result}"
                logger.error(error_msg)
                return self._create_error_response(error_msg, metadata)
            
            description, analysis_metadata = analysis_result
            logger.info(f"Enhanced analysis complete: {len(description)} characters")
            
            # Step 3: Detect scene type and apply cinematography enhancements
            scene_type = detect_scene_type_from_analysis(analysis_metadata)
            metadata["scene_type"] = scene_type
            
            # Update scene statistics
            if scene_type in self.processing_stats["scene_types_detected"]:
                self.processing_stats["scene_types_detected"][scene_type] += 1
            else:
                self.processing_stats["scene_types_detected"][scene_type] = 1
            
            logger.info(f"Scene type detected: {scene_type}")
            
            # Step 4: Apply enhanced FLUX optimization with cinematography knowledge
            logger.info("Applying enhanced multi-engine optimization...")
            optimized_prompt = apply_flux_rules(description, analysis_metadata)
            
            # Step 5: Additional cinematography enhancement if enabled
            if PROFESSIONAL_PHOTOGRAPHY_CONFIG.get("enable_expert_analysis", True):
                logger.info("Applying professional cinematography enhancement...")
                optimized_prompt = enhance_prompt_with_cinematography_knowledge(optimized_prompt, scene_type)
                metadata["cinematography_enhanced"] = True
                self.processing_stats["cinematography_enhancements"] += 1
            
            if not optimized_prompt:
                optimized_prompt = "A professional cinematic photograph with technical excellence"
                logger.warning("Empty prompt after optimization, using cinematography fallback")
            
            # Step 6: Calculate enhanced quality score
            logger.info("Calculating professional quality score...")
            score, score_breakdown = calculate_prompt_score(optimized_prompt, analysis_metadata)
            grade_info = get_score_grade(score)
            
            # Step 7: Generate comprehensive analysis report
            processing_time = time.time() - start_time
            metadata.update({
                "processing_time": processing_time,
                "success": True,
                "prompt_length": len(optimized_prompt),
                "score": score,
                "grade": grade_info["grade"],
                "analysis_metadata": analysis_metadata,
                "score_breakdown": score_breakdown,
                "has_camera_suggestion": analysis_metadata.get("has_camera_suggestion", False),
                "professional_enhancement": analysis_metadata.get("professional_enhancement", False)
            })
            
            analysis_report = self._generate_enhanced_report(
                optimized_prompt, analysis_metadata, score, 
                score_breakdown, processing_time, scene_type
            )
            
            # Step 8: Create enhanced score HTML
            score_html = self._generate_enhanced_score_html(score, grade_info, scene_type)
            
            # Update statistics
            self._update_stats(processing_time, True)
            
            logger.info(f"Phramer AI processing complete - Scene: {scene_type}, Score: {score}, Time: {processing_time:.1f}s")
            return optimized_prompt, analysis_report, score_html, metadata
            
        except Exception as e:
            processing_time = time.time() - start_time
            error_msg = f"Unexpected error in Phramer AI pipeline: {str(e)}"
            logger.error(error_msg, exc_info=True)
            
            metadata.update({
                "processing_time": processing_time,
                "error": error_msg
            })
            
            self._update_stats(processing_time, False)
            return self._create_error_response(error_msg, metadata)
        
        finally:
            # Always clean up memory
            clean_memory()
    
    def process_for_cinematic(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
        """Process image specifically for cinematic/MIA TV Series production"""
        return self.process_image(image, analysis_type="cinematic")
    
    def process_for_flux(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
        """Process image specifically for FLUX generation"""
        return self.process_image(image, analysis_type="flux")
    
    def process_for_multiengine(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
        """Process image for multi-engine compatibility (Flux, Midjourney, etc.)"""
        return self.process_image(image, analysis_type="multiengine")
    
    def _create_error_response(self, error_msg: str, metadata: Dict[str, Any]) -> Tuple[str, str, str, Dict[str, Any]]:
        """Create standardized error response"""
        error_prompt = "❌ Phramer AI processing failed"
        error_report = f"""**Error:** {error_msg}

**Troubleshooting:**
β€’ Verify image format (JPG, PNG, WebP)
β€’ Check image size (max 1024px)
β€’ Ensure stable internet connection
β€’ Try with a different image

**Support:** Contact Pariente AI technical team"""
        
        error_html = self._generate_enhanced_score_html(0, get_score_grade(0), "error")
        
        metadata["success"] = False
        metadata["error"] = error_msg
        
        return error_prompt, error_report, error_html, metadata
    
    def _generate_enhanced_report(self, prompt: str, analysis_metadata: Dict[str, Any], 
                                score: int, breakdown: Dict[str, int], 
                                processing_time: float, scene_type: str) -> str:
        """Generate comprehensive analysis report with cinematography insights"""
        
        model_used = analysis_metadata.get("model", "Unknown")
        device_used = analysis_metadata.get("device", self.device_config["device"])
        confidence = analysis_metadata.get("confidence", 0.0)
        has_cinema_context = analysis_metadata.get("cinematography_context_applied", False)
        camera_setup = analysis_metadata.get("camera_setup", "Not detected")
        
        # Device status emoji
        device_emoji = "⚑" if device_used == "cuda" else "πŸ’»"
        cinema_emoji = "🎬" if has_cinema_context else "πŸ“Έ"
        
        report = f"""**{cinema_emoji} PHRAMER AI ANALYSIS COMPLETE**
**Processing:** {device_emoji} {device_used.upper()} β€’ {processing_time:.1f}s β€’ Model: {model_used}
**Score:** {score}/100 β€’ Scene: {scene_type.replace('_', ' ').title()} β€’ Confidence: {confidence:.0%}

**🎯 SCORE BREAKDOWN:**
β€’ **Prompt Quality:** {breakdown.get('prompt_quality', 0)}/25 - Content detail and structure
β€’ **Technical Details:** {breakdown.get('technical_details', 0)}/25 - Camera and equipment specs
β€’ **Professional Cinematography:** {breakdown.get('professional_cinematography', 0)}/25 - Cinema expertise applied
β€’ **Multi-Engine Optimization:** {breakdown.get('multi_engine_optimization', 0)}/25 - Platform compatibility

**🎬 CINEMATOGRAPHY ANALYSIS:**
**Scene Type:** {scene_type.replace('_', ' ').title()}
**Camera Setup:** {camera_setup}
**Professional Context:** {'βœ… Applied' if has_cinema_context else '❌ Basic'}

**βš™οΈ OPTIMIZATIONS APPLIED:**
βœ… Professional camera configuration
βœ… Cinematography lighting principles
βœ… Technical specifications enhanced
βœ… Multi-engine compatibility (Flux, Midjourney)
βœ… Cinema-quality terminology
βœ… Scene-specific enhancements

**πŸ“Š PERFORMANCE METRICS:**
β€’ **Processing Time:** {processing_time:.1f}s
β€’ **Device:** {device_used.upper()}
β€’ **Model Confidence:** {confidence:.0%}
β€’ **Prompt Length:** {len(prompt)} characters
β€’ **Enhancement Level:** {'Professional' if has_cinema_context else 'Standard'}

**πŸ† COMPATIBILITY:**
β€’ **FLUX:** βœ… Optimized
β€’ **Midjourney:** βœ… Compatible  
β€’ **Stable Diffusion:** βœ… Ready
β€’ **Other Engines:** βœ… Universal format

**Pariente AI β€’ MIA TV Series β€’ 30+ Years Cinema Experience**"""
        
        return report
    
    def _generate_enhanced_score_html(self, score: int, grade_info: Dict[str, str], scene_type: str) -> str:
        """Generate enhanced HTML for score display with cinematography context"""
        
        # Scene type emoji
        scene_emojis = {
            "cinematic": "🎬",
            "portrait": "πŸ‘€", 
            "landscape": "πŸ”οΈ",
            "street": "πŸ™οΈ",
            "architectural": "πŸ›οΈ",
            "commercial": "πŸ’Ό",
            "error": "❌"
        }
        scene_emoji = scene_emojis.get(scene_type, "πŸ“Έ")
        
        html = f'''
        <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {grade_info["color"]}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
            <div style="font-size: 2.5rem; margin-bottom: 0.5rem;">{scene_emoji}</div>
            <div style="font-size: 3rem; font-weight: 800; color: {grade_info["color"]}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
            <div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade_info["grade"]}</div>
            <div style="font-size: 0.9rem; color: #15803d; margin: 0; text-transform: capitalize; letter-spacing: 0.05em; font-weight: 500;">{scene_type.replace('_', ' ')} Scene</div>
            <div style="font-size: 0.8rem; color: #15803d; margin: 0.5rem 0 0 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Phramer AI Quality</div>
        </div>
        '''
        
        return html
    
    def _update_stats(self, processing_time: float, success: bool) -> None:
        """Update processing statistics with cinematography tracking"""
        self.processing_stats["total_processed"] += 1
        
        if success:
            self.processing_stats["successful_analyses"] += 1
        else:
            self.processing_stats["failed_analyses"] += 1
        
        # Update rolling average of processing time
        current_avg = self.processing_stats["average_processing_time"]
        total_count = self.processing_stats["total_processed"]
        
        self.processing_stats["average_processing_time"] = (
            (current_avg * (total_count - 1) + processing_time) / total_count
        )
    
    def get_enhanced_stats(self) -> Dict[str, Any]:
        """Get enhanced processing statistics with cinematography insights"""
        stats = self.processing_stats.copy()
        
        if stats["total_processed"] > 0:
            stats["success_rate"] = stats["successful_analyses"] / stats["total_processed"]
            stats["cinematography_enhancement_rate"] = stats["cinematography_enhancements"] / stats["total_processed"]
        else:
            stats["success_rate"] = 0.0
            stats["cinematography_enhancement_rate"] = 0.0
        
        stats["device_info"] = self.device_config
        stats["most_common_scene"] = max(stats["scene_types_detected"].items(), key=lambda x: x[1])[0] if stats["scene_types_detected"] else "none"
        
        return stats
    
    def reset_stats(self) -> None:
        """Reset processing statistics"""
        self.processing_stats = {
            "total_processed": 0,
            "successful_analyses": 0,
            "failed_analyses": 0,
            "average_processing_time": 0.0,
            "cinematography_enhancements": 0,
            "scene_types_detected": {}
        }
        logger.info("Phramer AI processing statistics reset")


class CinematicBatchProcessor:
    """Handle batch processing for MIA TV Series production"""
    
    def __init__(self, optimizer: PhramerlAIOptimizer):
        self.optimizer = optimizer
        self.batch_results = []
        self.batch_stats = {
            "total_images": 0,
            "successful_analyses": 0,
            "scene_type_distribution": {},
            "average_score": 0.0,
            "processing_time_total": 0.0
        }
    
    def process_cinematic_batch(self, images: list, analysis_type: str = "cinematic") -> list:
        """Process multiple images for cinematic production"""
        results = []
        total_score = 0
        successful_count = 0
        
        logger.info(f"Starting cinematic batch processing: {len(images)} images")
        
        for i, image in enumerate(images):
            logger.info(f"Processing cinematic batch item {i+1}/{len(images)}")
            
            try:
                if analysis_type == "cinematic":
                    result = self.optimizer.process_for_cinematic(image)
                elif analysis_type == "flux":
                    result = self.optimizer.process_for_flux(image)
                else:
                    result = self.optimizer.process_for_multiengine(image)
                
                success = result[3]["success"]
                
                if success:
                    score = result[3].get("score", 0)
                    scene_type = result[3].get("scene_type", "unknown")
                    
                    total_score += score
                    successful_count += 1
                    
                    # Update scene distribution
                    if scene_type in self.batch_stats["scene_type_distribution"]:
                        self.batch_stats["scene_type_distribution"][scene_type] += 1
                    else:
                        self.batch_stats["scene_type_distribution"][scene_type] = 1
                
                results.append({
                    "index": i,
                    "success": success,
                    "result": result,
                    "scene_type": result[3].get("scene_type", "unknown"),
                    "score": result[3].get("score", 0)
                })
                
            except Exception as e:
                logger.error(f"Cinematic batch item {i} failed: {e}")
                results.append({
                    "index": i,
                    "success": False,
                    "error": str(e),
                    "scene_type": "error",
                    "score": 0
                })
        
        # Update batch statistics
        self.batch_stats.update({
            "total_images": len(images),
            "successful_analyses": successful_count,
            "average_score": total_score / successful_count if successful_count > 0 else 0.0
        })
        
        self.batch_results = results
        logger.info(f"Cinematic batch processing complete: {successful_count}/{len(images)} successful")
        
        return results
    
    def get_cinematic_batch_summary(self) -> Dict[str, Any]:
        """Get comprehensive summary of cinematic batch processing"""
        if not self.batch_results:
            return {"total": 0, "successful": 0, "failed": 0, "average_score": 0.0}
        
        successful = sum(1 for r in self.batch_results if r["success"])
        total = len(self.batch_results)
        
        summary = {
            "total": total,
            "successful": successful,
            "failed": total - successful,
            "success_rate": successful / total if total > 0 else 0.0,
            "average_score": self.batch_stats["average_score"],
            "scene_distribution": self.batch_stats["scene_type_distribution"],
            "most_common_scene": max(self.batch_stats["scene_type_distribution"].items(), key=lambda x: x[1])[0] if self.batch_stats["scene_type_distribution"] else "none"
        }
        
        return summary


# Global optimizer instance for Phramer AI
phramer_optimizer = PhramerlAIOptimizer()


def process_image_simple(image: Any, model_name: str = None, analysis_type: str = "multiengine") -> Tuple[str, str, str]:
    """
    Simple interface for Phramer AI image processing
    
    Args:
        image: Input image
        model_name: Optional model name
        analysis_type: Type of analysis ("multiengine", "cinematic", "flux")
        
    Returns:
        Tuple of (prompt, report, score_html)
    """
    if model_name and model_name != phramer_optimizer.model_name:
        # Create temporary optimizer with specified model
        temp_optimizer = PhramerlAIOptimizer(model_name)
        prompt, report, score_html, _ = temp_optimizer.process_image(image, analysis_type)
    else:
        prompt, report, score_html, _ = phramer_optimizer.process_image(image, analysis_type)
    
    return prompt, report, score_html


def process_for_mia_tv_series(image: Any) -> Tuple[str, str, str]:
    """
    Specialized processing for MIA TV Series production
    
    Args:
        image: Input image
        
    Returns:
        Tuple of (cinematic_prompt, detailed_report, score_html)
    """
    return phramer_optimizer.process_for_cinematic(image)[:3]


def get_phramer_stats() -> Dict[str, Any]:
    """Get comprehensive Phramer AI processing statistics"""
    return phramer_optimizer.get_enhanced_stats()


# Export main components
__all__ = [
    "PhramerlAIOptimizer",
    "CinematicBatchProcessor", 
    "phramer_optimizer",
    "process_image_simple",
    "process_for_mia_tv_series",
    "get_phramer_stats"
]