File size: 15,609 Bytes
85f2f4b
 
325e056
85f2f4b
 
 
 
325e056
85f2f4b
325e056
85f2f4b
 
 
 
325e056
85f2f4b
 
 
325e056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f2f4b
325e056
 
 
 
 
 
 
 
 
85f2f4b
 
325e056
 
 
 
 
 
 
85f2f4b
325e056
 
 
 
85f2f4b
325e056
 
 
85f2f4b
325e056
 
 
 
 
85f2f4b
325e056
85f2f4b
325e056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f2f4b
325e056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f2f4b
325e056
 
 
 
85f2f4b
325e056
 
85f2f4b
325e056
 
 
 
 
 
 
85f2f4b
325e056
 
 
85f2f4b
325e056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f2f4b
325e056
 
 
 
85f2f4b
325e056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f2f4b
325e056
85f2f4b
325e056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f2f4b
325e056
 
 
85f2f4b
325e056
 
 
 
85f2f4b
325e056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f2f4b
325e056
 
 
 
85f2f4b
325e056
85f2f4b
 
325e056
85f2f4b
 
 
 
325e056
85f2f4b
 
 
325e056
 
85f2f4b
 
325e056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f2f4b
325e056
85f2f4b
 
 
 
325e056
85f2f4b
325e056
 
 
85f2f4b
 
 
 
325e056
 
 
 
 
 
 
 
 
85f2f4b
325e056
 
 
 
85f2f4b
 
 
325e056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f2f4b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""
Ultra Supreme Analyzer for image analysis and prompt building
VERSIÓN MEJORADA - Potencia CLIP en lugar de limitarlo
"""

import re
from typing import Dict, List, Any, Tuple
import logging

logger = logging.getLogger(__name__)


class UltraSupremeAnalyzer:
    """
    ULTRA SUPREME ANALYSIS ENGINE - POTENCIA CLIP, NO LO LIMITA
    """
    
    def __init__(self):
        # Palabras a limpiar de las descripciones de CLIP
        self.cleanup_patterns = [
            r'arafed\s*',
            r'there is\s*',
            r'a photo of\s*',
            r'an image of\s*',
            r'a picture of\s*',
            r'inspired by [^,]+,?\s*',
            r'by [A-Z][^,]+,?\s*',
            r'trending on [^,]+,?\s*',
            r'featured on [^,]+,?\s*',
            r'\d+k\s*',
            r'::\s*::\s*',
            r'contest winner,?\s*',
            r'award winning,?\s*',
        ]
        
        # Indicadores de calidad técnica
        self.technical_indicators = {
            'portrait': ['portrait', 'headshot', 'face', 'person', 'man', 'woman', 'child'],
            'landscape': ['mountain', 'landscape', 'nature', 'outdoor', 'field', 'forest'],
            'dramatic': ['dramatic', 'light shining', 'silhouette', 'backlit', 'atmospheric'],
            'professional': ['professional', 'studio', 'formal', 'business'],
            'artistic': ['artistic', 'creative', 'abstract', 'conceptual'],
            'documentary': ['documentary', 'candid', 'street', 'journalism', 'authentic']
        }
        
        # Mejoras de iluminación basadas en contexto
        self.lighting_enhancements = {
            'outdoor': 'natural lighting with golden hour warmth',
            'mountain': 'dramatic alpine lighting with atmospheric haze',
            'portrait': 'professional portrait lighting with subtle rim light',
            'silhouette': 'dramatic backlighting creating ethereal silhouettes',
            'indoor': 'soft diffused window lighting with gentle shadows',
            'night': 'cinematic low-key lighting with strategic highlights',
            'default': 'masterful lighting that enhances depth and dimension'
        }
        
        # Configuraciones de cámara según el tipo de foto
        self.camera_configs = {
            'portrait': 'Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8',
            'landscape': 'Shot on Phase One XT, 40mm f/4 lens at f/8',
            'dramatic': 'Shot on Canon R5, 85mm f/1.2 lens at f/2',
            'street': 'Shot on Leica M11, 35mm f/1.4 lens at f/2.8',
            'default': 'Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4'
        }

    def clean_clip_description(self, description: str) -> str:
        """Limpia la descripción de CLIP eliminando ruido pero preservando contenido valioso"""
        cleaned = description.lower()
        
        # Eliminar patrones de ruido
        for pattern in self.cleanup_patterns:
            cleaned = re.sub(pattern, '', cleaned, flags=re.IGNORECASE)
        
        # Limpiar espacios múltiples y comas redundantes
        cleaned = re.sub(r'\s+', ' ', cleaned)
        cleaned = re.sub(r',\s*,+', ',', cleaned)
        cleaned = re.sub(r'^\s*,\s*', '', cleaned)
        cleaned = re.sub(r'\s*,\s*$', '', cleaned)
        
        return cleaned.strip()
    
    def extract_key_elements(self, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]:
        """Extrae elementos clave de las tres descripciones de CLIP"""
        
        # Limpiar todas las descripciones
        fast_clean = self.clean_clip_description(clip_fast)
        classic_clean = self.clean_clip_description(clip_classic)
        best_clean = self.clean_clip_description(clip_best)
        
        # Combinar información única de las tres fuentes
        all_descriptions = f"{fast_clean} {classic_clean} {best_clean}"
        
        # Extraer elementos principales
        elements = {
            'main_subject': self._extract_main_subject(all_descriptions),
            'action': self._extract_action(all_descriptions),
            'location': self._extract_location(all_descriptions),
            'mood': self._extract_mood(all_descriptions),
            'special_features': self._extract_special_features(all_descriptions),
            'technical_style': self._determine_technical_style(all_descriptions),
            'original_essence': self._preserve_unique_elements(fast_clean, classic_clean, best_clean)
        }
        
        return elements
    
    def _extract_main_subject(self, description: str) -> str:
        """Extrae el sujeto principal de la descripción"""
        # Buscar patrones comunes de sujetos
        subject_patterns = [
            r'(a |an )?([\w\s]+ )?(man|woman|person|child|boy|girl|people|group)',
            r'(a |an )?([\w\s]+ )?(portrait|face|figure)',
            r'(a |an )?([\w\s]+ )?(landscape|mountain|building|structure)',
            r'(a |an )?([\w\s]+ )?(animal|dog|cat|bird)',
        ]
        
        for pattern in subject_patterns:
            match = re.search(pattern, description)
            if match:
                return match.group(0).strip()
        
        # Si no encuentra un patrón específico, tomar las primeras palabras significativas
        words = description.split()
        if len(words) > 2:
            return ' '.join(words[:3])
        
        return "figure"
    
    def _extract_action(self, description: str) -> str:
        """Extrae la acción o pose del sujeto"""
        action_keywords = ['standing', 'sitting', 'walking', 'running', 'looking', 
                          'holding', 'wearing', 'posing', 'working', 'playing']
        
        for keyword in action_keywords:
            if keyword in description:
                # Extraer contexto alrededor de la palabra clave
                pattern = rf'\b\w*\s*{keyword}\s*\w*\s*\w*'
                match = re.search(pattern, description)
                if match:
                    return match.group(0).strip()
        
        return ""
    
    def _extract_location(self, description: str) -> str:
        """Extrae información de ubicación o ambiente"""
        location_keywords = ['mountain', 'beach', 'forest', 'city', 'street', 'indoor',
                            'outdoor', 'studio', 'nature', 'urban', 'field', 'desert',
                            'ocean', 'lake', 'building', 'home', 'office']
        
        found_locations = []
        for keyword in location_keywords:
            if keyword in description:
                found_locations.append(keyword)
        
        if found_locations:
            return ' '.join(found_locations[:2])  # Máximo 2 ubicaciones
        
        return ""
    
    def _extract_mood(self, description: str) -> str:
        """Extrae el mood o atmósfera de la imagen"""
        mood_keywords = ['dramatic', 'peaceful', 'serene', 'intense', 'mysterious',
                        'joyful', 'melancholic', 'powerful', 'ethereal', 'moody',
                        'bright', 'dark', 'atmospheric', 'dreamy', 'dynamic']
        
        for keyword in mood_keywords:
            if keyword in description:
                return keyword
        
        return ""
    
    def _extract_special_features(self, description: str) -> List[str]:
        """Extrae características especiales únicas de la descripción"""
        special_patterns = [
            'light shining on [\w\s]+',
            'wearing [\w\s]+',
            'with [\w\s]+ in the background',
            'surrounded by [\w\s]+',
            '[\w\s]+ lighting',
            '[\w\s]+ atmosphere'
        ]
        
        features = []
        for pattern in special_patterns:
            matches = re.findall(pattern, description)
            features.extend(matches)
        
        return features[:3]  # Limitar a 3 características especiales
    
    def _determine_technical_style(self, description: str) -> str:
        """Determina el estilo técnico más apropiado basado en el contenido"""
        style_scores = {}
        
        for style, keywords in self.technical_indicators.items():
            score = sum(1 for keyword in keywords if keyword in description)
            if score > 0:
                style_scores[style] = score
        
        if style_scores:
            return max(style_scores, key=style_scores.get)
        
        return 'default'
    
    def _preserve_unique_elements(self, fast: str, classic: str, best: str) -> str:
        """Preserva elementos únicos e interesantes de las descripciones"""
        # Encontrar frases únicas que aparecen en alguna descripción
        all_words = set(fast.split() + classic.split() + best.split())
        common_words = set(['a', 'an', 'the', 'is', 'are', 'was', 'were', 'with', 'of', 'in', 'on', 'at'])
        
        unique_words = all_words - common_words
        
        # Buscar frases interesantes que contengan estas palabras únicas
        unique_phrases = []
        for desc in [fast, classic, best]:
            if 'light shining' in desc or 'adventure gear' in desc or 'anthropological' in desc:
                # Estas son frases únicas valiosas
                unique_phrases.append(desc)
                break
        
        return ' '.join(unique_phrases[:1]) if unique_phrases else ""
    
    def build_ultra_supreme_prompt(self, elements: Dict[str, Any], original_descriptions: List[str]) -> str:
        """Construye un prompt que POTENCIA la visión de CLIP"""
        
        components = []
        
        # 1. Sujeto principal con artículo apropiado
        subject = elements['main_subject']
        if subject:
            # Determinar artículo
            if subject[0].lower() in 'aeiou':
                components.append(f"An {subject}")
            else:
                components.append(f"A {subject}")
        else:
            components.append("A figure")
        
        # 2. Acción si existe
        if elements['action']:
            components.append(elements['action'])
        
        # 3. Características especiales (esto es lo que hace única la imagen)
        if elements['special_features']:
            for feature in elements['special_features'][:2]:
                components.append(feature)
        
        # 4. Ubicación/Ambiente
        if elements['location']:
            if 'mountain' in elements['location']:
                components.append("on a majestic mountain peak")
            elif 'outdoor' in elements['location'] or 'nature' in elements['location']:
                components.append("in a breathtaking natural setting")
            else:
                components.append(f"in {elements['location']}")
        
        # 5. Mood/Atmósfera si existe
        if elements['mood']:
            components.append(f"capturing a {elements['mood']} atmosphere")
        
        # 6. Iluminación basada en contexto
        lighting_context = elements['location'] or elements['technical_style']
        lighting = self.lighting_enhancements.get(lighting_context, self.lighting_enhancements['default'])
        components.append(f"illuminated with {lighting}")
        
        # 7. Configuración técnica de cámara
        camera_setup = self.camera_configs.get(elements['technical_style'], self.camera_configs['default'])
        components.append(camera_setup)
        
        # 8. Estilo fotográfico final
        if elements['technical_style'] == 'portrait':
            components.append("masterful portrait photography")
        elif elements['technical_style'] == 'landscape':
            components.append("epic landscape photography")
        elif elements['technical_style'] == 'dramatic':
            components.append("cinematic photography with powerful visual impact")
        elif elements['technical_style'] == 'documentary':
            components.append("authentic documentary photography")
        else:
            components.append("professional photography with exceptional detail")
        
        # 9. Añadir esencia única preservada si existe
        if elements['original_essence'] and len(elements['original_essence']) > 10:
            # Incluir elementos únicos que CLIP detectó
            logger.info(f"Preservando esencia única: {elements['original_essence']}")
        
        # Construir prompt final
        prompt = ", ".join(components)
        
        # Limpieza final
        prompt = re.sub(r'\s+', ' ', prompt)
        prompt = re.sub(r',\s*,+', ',', prompt)
        prompt = re.sub(r'\s*,\s*', ', ', prompt)
        
        # Capitalizar primera letra
        if prompt:
            prompt = prompt[0].upper() + prompt[1:]
        
        logger.info(f"Prompt generado: {prompt}")
        
        return prompt
    
    def ultra_supreme_analysis(self, clip_fast: str, clip_classic: str, clip_best: str) -> Dict[str, Any]:
        """Análisis que POTENCIA la información de CLIP en lugar de limitarla"""
        
        logger.info("Iniciando análisis MEJORADO que potencia CLIP")
        
        # Extraer elementos clave de las descripciones
        elements = self.extract_key_elements(clip_fast, clip_classic, clip_best)
        
        # Construir resultado del análisis
        result = {
            "elements": elements,
            "technical_style": elements['technical_style'],
            "unique_features": elements['special_features'],
            "preserved_essence": elements['original_essence'],
            "mood": elements['mood'],
            "location": elements['location']
        }
        
        return result
    
    def build_ultra_supreme_prompt(self, ultra_analysis: Dict[str, Any], clip_results: List[str]) -> str:
        """Versión pública del método para compatibilidad"""
        return self.build_ultra_supreme_prompt(ultra_analysis['elements'], clip_results)
    
    def calculate_ultra_supreme_score(self, prompt: str, ultra_analysis: Dict[str, Any]) -> Tuple[int, Dict[str, int]]:
        """Calcula score basado en la riqueza del prompt generado"""
        
        score = 0
        breakdown = {}
        
        # Estructura (20 puntos)
        structure_score = 0
        if prompt.startswith(("A ", "An ")):
            structure_score += 10
        if prompt.count(",") >= 5:
            structure_score += 10
        score += structure_score
        breakdown["structure"] = structure_score
        
        # Elementos únicos preservados (30 puntos)
        unique_score = 0
        if ultra_analysis.get('unique_features'):
            unique_score += len(ultra_analysis['unique_features']) * 10
        unique_score = min(unique_score, 30)
        score += unique_score
        breakdown["unique"] = unique_score
        
        # Contexto técnico (20 puntos)
        tech_score = 0
        if "Shot on" in prompt:
            tech_score += 10
        if any(term in prompt for term in ["f/", "mm"]):
            tech_score += 10
        score += tech_score
        breakdown["technical"] = tech_score
        
        # Mood y atmósfera (15 puntos)
        mood_score = 0
        if ultra_analysis.get('mood'):
            mood_score += 15
        score += mood_score
        breakdown["mood"] = mood_score
        
        # Calidad descriptiva (15 puntos)
        desc_score = 0
        if len(prompt) > 100:
            desc_score += 10
        if any(term in prompt for term in ["masterful", "epic", "cinematic", "exceptional"]):
            desc_score += 5
        score += desc_score
        breakdown["descriptive"] = desc_score
        
        return min(score, 100), breakdown