File size: 12,557 Bytes
05bb27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""
Main processing logic for FLUX Prompt Optimizer
Handles image analysis, prompt optimization, and scoring
"""

import logging
import time
from typing import Tuple, Dict, Any, Optional
from PIL import Image
from datetime import datetime

from config import APP_CONFIG, PROCESSING_CONFIG, get_device_config
from utils import (
    optimize_image, validate_image, apply_flux_rules, 
    calculate_prompt_score, get_score_grade, format_analysis_report,
    clean_memory, safe_execute
)
from models import analyze_image

logger = logging.getLogger(__name__)


class FluxOptimizer:
    """Main optimizer class for FLUX prompt generation"""
    
    def __init__(self, model_name: str = None):
        self.model_name = model_name
        self.device_config = get_device_config()
        self.processing_stats = {
            "total_processed": 0,
            "successful_analyses": 0,
            "failed_analyses": 0,
            "average_processing_time": 0.0
        }
        
        logger.info(f"FluxOptimizer initialized - Device: {self.device_config['device']}")
    
    def process_image(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
        """
        Complete image processing pipeline
        
        Args:
            image: Input image (PIL, numpy array, or file path)
            
        Returns:
            Tuple of (optimized_prompt, analysis_report, score_html, metadata)
        """
        start_time = time.time()
        metadata = {
            "processing_time": 0.0,
            "success": False,
            "model_used": self.model_name or "auto",
            "device": self.device_config["device"],
            "error": None
        }
        
        try:
            # Step 1: Validate and optimize input image
            logger.info("Starting image processing pipeline...")
            
            if not validate_image(image):
                error_msg = "Invalid or unsupported image format"
                logger.error(error_msg)
                return self._create_error_response(error_msg, metadata)
            
            optimized_image = optimize_image(image)
            if optimized_image is None:
                error_msg = "Image optimization failed"
                logger.error(error_msg)
                return self._create_error_response(error_msg, metadata)
            
            logger.info(f"Image optimized to size: {optimized_image.size}")
            
            # Step 2: Analyze image with selected model
            logger.info("Running image analysis...")
            analysis_success, analysis_result = safe_execute(
                analyze_image, 
                optimized_image, 
                self.model_name
            )
            
            if not analysis_success:
                error_msg = f"Image analysis failed: {analysis_result}"
                logger.error(error_msg)
                return self._create_error_response(error_msg, metadata)
            
            description, analysis_metadata = analysis_result
            logger.info(f"Analysis complete: {len(description)} characters")
            
            # Step 3: Apply FLUX optimization rules
            logger.info("Applying FLUX optimization rules...")
            optimized_prompt = apply_flux_rules(description)
            
            if not optimized_prompt:
                optimized_prompt = "A professional photograph"
                logger.warning("Empty prompt after optimization, using fallback")
            
            # Step 4: Calculate quality score
            logger.info("Calculating quality score...")
            score, score_breakdown = calculate_prompt_score(optimized_prompt, analysis_metadata)
            grade_info = get_score_grade(score)
            
            # Step 5: Generate analysis report
            processing_time = time.time() - start_time
            metadata.update({
                "processing_time": processing_time,
                "success": True,
                "prompt_length": len(optimized_prompt),
                "score": score,
                "grade": grade_info["grade"],
                "analysis_metadata": analysis_metadata
            })
            
            analysis_report = self._generate_detailed_report(
                optimized_prompt, analysis_metadata, score, 
                score_breakdown, processing_time
            )
            
            # Step 6: Create score HTML
            score_html = self._generate_score_html(score, grade_info)
            
            # Update statistics
            self._update_stats(processing_time, True)
            
            logger.info(f"Processing complete - Score: {score}, Time: {processing_time:.1f}s")
            return optimized_prompt, analysis_report, score_html, metadata
            
        except Exception as e:
            processing_time = time.time() - start_time
            error_msg = f"Unexpected error in processing pipeline: {str(e)}"
            logger.error(error_msg, exc_info=True)
            
            metadata.update({
                "processing_time": processing_time,
                "error": error_msg
            })
            
            self._update_stats(processing_time, False)
            return self._create_error_response(error_msg, metadata)
        
        finally:
            # Always clean up memory
            clean_memory()
    
    def _create_error_response(self, error_msg: str, metadata: Dict[str, Any]) -> Tuple[str, str, str, Dict[str, Any]]:
        """Create standardized error response"""
        error_prompt = "❌ Processing failed"
        error_report = f"**Error:** {error_msg}\n\nPlease try with a different image or check the logs for more details."
        error_html = self._generate_score_html(0, get_score_grade(0))
        
        metadata["success"] = False
        metadata["error"] = error_msg
        
        return error_prompt, error_report, error_html, metadata
    
    def _generate_detailed_report(self, prompt: str, analysis_metadata: Dict[str, Any], 
                                score: int, breakdown: Dict[str, int], 
                                processing_time: float) -> str:
        """Generate comprehensive analysis report"""
        
        model_used = analysis_metadata.get("model", "Unknown")
        device_used = analysis_metadata.get("device", self.device_config["device"])
        confidence = analysis_metadata.get("confidence", 0.0)
        
        # Device status emoji
        device_emoji = "⚡" if device_used == "cuda" else "💻"
        
        report = f"""**Analysis Complete**
**Processing:** {device_emoji} {device_used.upper()}{processing_time:.1f}s • Model: {model_used}
**Score:** {score}/100 • Confidence: {confidence:.0%}

**Score Breakdown:**
• **Prompt Quality:** {breakdown.get('prompt_quality', 0)}/30 - Content detail and description
• **Technical Details:** {breakdown.get('technical_details', 0)}/25 - Camera and photography settings
• **Artistic Value:** {breakdown.get('artistic_value', 0)}/25 - Creative elements  
• **FLUX Optimization:** {breakdown.get('flux_optimization', 0)}/20 - Platform optimizations

**Analysis Summary:**
**Description Length:** {len(prompt)} characters
**Model Used:** {analysis_metadata.get('model', 'N/A')}

**Applied Optimizations:**
✅ Camera settings added
✅ Lighting configuration applied
✅ Technical parameters optimized
✅ FLUX rules implemented
✅ Content cleaned and enhanced

**Performance:**
• **Processing Time:** {processing_time:.1f}s
• **Device:** {device_used.upper()}
• **Model Confidence:** {confidence:.0%}

**Frame 0 Laboratory for MIA**"""
        
        return report
    
    def _generate_score_html(self, score: int, grade_info: Dict[str, str]) -> str:
        """Generate HTML for score display"""
        
        html = f'''
        <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {grade_info["color"]}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
            <div style="font-size: 3rem; font-weight: 800; color: {grade_info["color"]}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
            <div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade_info["grade"]}</div>
            <div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">FLUX Quality Score</div>
        </div>
        '''
        
        return html
    
    def _update_stats(self, processing_time: float, success: bool) -> None:
        """Update processing statistics"""
        self.processing_stats["total_processed"] += 1
        
        if success:
            self.processing_stats["successful_analyses"] += 1
        else:
            self.processing_stats["failed_analyses"] += 1
        
        # Update rolling average of processing time
        current_avg = self.processing_stats["average_processing_time"]
        total_count = self.processing_stats["total_processed"]
        
        self.processing_stats["average_processing_time"] = (
            (current_avg * (total_count - 1) + processing_time) / total_count
        )
    
    def get_stats(self) -> Dict[str, Any]:
        """Get current processing statistics"""
        stats = self.processing_stats.copy()
        
        if stats["total_processed"] > 0:
            stats["success_rate"] = stats["successful_analyses"] / stats["total_processed"]
        else:
            stats["success_rate"] = 0.0
        
        stats["device_info"] = self.device_config
        
        return stats
    
    def reset_stats(self) -> None:
        """Reset processing statistics"""
        self.processing_stats = {
            "total_processed": 0,
            "successful_analyses": 0,
            "failed_analyses": 0,
            "average_processing_time": 0.0
        }
        logger.info("Processing statistics reset")


class BatchProcessor:
    """Handle batch processing of multiple images"""
    
    def __init__(self, optimizer: FluxOptimizer):
        self.optimizer = optimizer
        self.batch_results = []
    
    def process_batch(self, images: list) -> list:
        """Process multiple images in batch"""
        results = []
        
        for i, image in enumerate(images):
            logger.info(f"Processing batch item {i+1}/{len(images)}")
            
            try:
                result = self.optimizer.process_image(image)
                results.append({
                    "index": i,
                    "success": result[3]["success"],
                    "result": result
                })
                
            except Exception as e:
                logger.error(f"Batch item {i} failed: {e}")
                results.append({
                    "index": i,
                    "success": False,
                    "error": str(e)
                })
        
        self.batch_results = results
        return results
    
    def get_batch_summary(self) -> Dict[str, Any]:
        """Get summary of batch processing results"""
        if not self.batch_results:
            return {"total": 0, "successful": 0, "failed": 0}
        
        successful = sum(1 for r in self.batch_results if r["success"])
        total = len(self.batch_results)
        
        return {
            "total": total,
            "successful": successful,
            "failed": total - successful,
            "success_rate": successful / total if total > 0 else 0.0
        }


# Global optimizer instance
flux_optimizer = FluxOptimizer()


def process_image_simple(image: Any, model_name: str = None) -> Tuple[str, str, str]:
    """
    Simple interface for image processing
    
    Args:
        image: Input image
        model_name: Optional model name
        
    Returns:
        Tuple of (prompt, report, score_html)
    """
    if model_name and model_name != flux_optimizer.model_name:
        # Create temporary optimizer with specified model
        temp_optimizer = FluxOptimizer(model_name)
        prompt, report, score_html, _ = temp_optimizer.process_image(image)
    else:
        prompt, report, score_html, _ = flux_optimizer.process_image(image)
    
    return prompt, report, score_html


# Export main components
__all__ = [
    "FluxOptimizer",
    "BatchProcessor", 
    "flux_optimizer",
    "process_image_simple"
]