Spaces:
Running
on
Zero
Running
on
Zero
Create processor.py
Browse files- processor.py +332 -0
processor.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Main processing logic for FLUX Prompt Optimizer
|
3 |
+
Handles image analysis, prompt optimization, and scoring
|
4 |
+
"""
|
5 |
+
|
6 |
+
import logging
|
7 |
+
import time
|
8 |
+
from typing import Tuple, Dict, Any, Optional
|
9 |
+
from PIL import Image
|
10 |
+
from datetime import datetime
|
11 |
+
|
12 |
+
from config import APP_CONFIG, PROCESSING_CONFIG, get_device_config
|
13 |
+
from utils import (
|
14 |
+
optimize_image, validate_image, apply_flux_rules,
|
15 |
+
calculate_prompt_score, get_score_grade, format_analysis_report,
|
16 |
+
clean_memory, safe_execute
|
17 |
+
)
|
18 |
+
from models import analyze_image
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class FluxOptimizer:
|
24 |
+
"""Main optimizer class for FLUX prompt generation"""
|
25 |
+
|
26 |
+
def __init__(self, model_name: str = None):
|
27 |
+
self.model_name = model_name
|
28 |
+
self.device_config = get_device_config()
|
29 |
+
self.processing_stats = {
|
30 |
+
"total_processed": 0,
|
31 |
+
"successful_analyses": 0,
|
32 |
+
"failed_analyses": 0,
|
33 |
+
"average_processing_time": 0.0
|
34 |
+
}
|
35 |
+
|
36 |
+
logger.info(f"FluxOptimizer initialized - Device: {self.device_config['device']}")
|
37 |
+
|
38 |
+
def process_image(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
|
39 |
+
"""
|
40 |
+
Complete image processing pipeline
|
41 |
+
|
42 |
+
Args:
|
43 |
+
image: Input image (PIL, numpy array, or file path)
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
Tuple of (optimized_prompt, analysis_report, score_html, metadata)
|
47 |
+
"""
|
48 |
+
start_time = time.time()
|
49 |
+
metadata = {
|
50 |
+
"processing_time": 0.0,
|
51 |
+
"success": False,
|
52 |
+
"model_used": self.model_name or "auto",
|
53 |
+
"device": self.device_config["device"],
|
54 |
+
"error": None
|
55 |
+
}
|
56 |
+
|
57 |
+
try:
|
58 |
+
# Step 1: Validate and optimize input image
|
59 |
+
logger.info("Starting image processing pipeline...")
|
60 |
+
|
61 |
+
if not validate_image(image):
|
62 |
+
error_msg = "Invalid or unsupported image format"
|
63 |
+
logger.error(error_msg)
|
64 |
+
return self._create_error_response(error_msg, metadata)
|
65 |
+
|
66 |
+
optimized_image = optimize_image(image)
|
67 |
+
if optimized_image is None:
|
68 |
+
error_msg = "Image optimization failed"
|
69 |
+
logger.error(error_msg)
|
70 |
+
return self._create_error_response(error_msg, metadata)
|
71 |
+
|
72 |
+
logger.info(f"Image optimized to size: {optimized_image.size}")
|
73 |
+
|
74 |
+
# Step 2: Analyze image with selected model
|
75 |
+
logger.info("Running image analysis...")
|
76 |
+
analysis_success, analysis_result = safe_execute(
|
77 |
+
analyze_image,
|
78 |
+
optimized_image,
|
79 |
+
self.model_name
|
80 |
+
)
|
81 |
+
|
82 |
+
if not analysis_success:
|
83 |
+
error_msg = f"Image analysis failed: {analysis_result}"
|
84 |
+
logger.error(error_msg)
|
85 |
+
return self._create_error_response(error_msg, metadata)
|
86 |
+
|
87 |
+
description, analysis_metadata = analysis_result
|
88 |
+
logger.info(f"Analysis complete: {len(description)} characters")
|
89 |
+
|
90 |
+
# Step 3: Apply FLUX optimization rules
|
91 |
+
logger.info("Applying FLUX optimization rules...")
|
92 |
+
optimized_prompt = apply_flux_rules(description)
|
93 |
+
|
94 |
+
if not optimized_prompt:
|
95 |
+
optimized_prompt = "A professional photograph"
|
96 |
+
logger.warning("Empty prompt after optimization, using fallback")
|
97 |
+
|
98 |
+
# Step 4: Calculate quality score
|
99 |
+
logger.info("Calculating quality score...")
|
100 |
+
score, score_breakdown = calculate_prompt_score(optimized_prompt, analysis_metadata)
|
101 |
+
grade_info = get_score_grade(score)
|
102 |
+
|
103 |
+
# Step 5: Generate analysis report
|
104 |
+
processing_time = time.time() - start_time
|
105 |
+
metadata.update({
|
106 |
+
"processing_time": processing_time,
|
107 |
+
"success": True,
|
108 |
+
"prompt_length": len(optimized_prompt),
|
109 |
+
"score": score,
|
110 |
+
"grade": grade_info["grade"],
|
111 |
+
"analysis_metadata": analysis_metadata
|
112 |
+
})
|
113 |
+
|
114 |
+
analysis_report = self._generate_detailed_report(
|
115 |
+
optimized_prompt, analysis_metadata, score,
|
116 |
+
score_breakdown, processing_time
|
117 |
+
)
|
118 |
+
|
119 |
+
# Step 6: Create score HTML
|
120 |
+
score_html = self._generate_score_html(score, grade_info)
|
121 |
+
|
122 |
+
# Update statistics
|
123 |
+
self._update_stats(processing_time, True)
|
124 |
+
|
125 |
+
logger.info(f"Processing complete - Score: {score}, Time: {processing_time:.1f}s")
|
126 |
+
return optimized_prompt, analysis_report, score_html, metadata
|
127 |
+
|
128 |
+
except Exception as e:
|
129 |
+
processing_time = time.time() - start_time
|
130 |
+
error_msg = f"Unexpected error in processing pipeline: {str(e)}"
|
131 |
+
logger.error(error_msg, exc_info=True)
|
132 |
+
|
133 |
+
metadata.update({
|
134 |
+
"processing_time": processing_time,
|
135 |
+
"error": error_msg
|
136 |
+
})
|
137 |
+
|
138 |
+
self._update_stats(processing_time, False)
|
139 |
+
return self._create_error_response(error_msg, metadata)
|
140 |
+
|
141 |
+
finally:
|
142 |
+
# Always clean up memory
|
143 |
+
clean_memory()
|
144 |
+
|
145 |
+
def _create_error_response(self, error_msg: str, metadata: Dict[str, Any]) -> Tuple[str, str, str, Dict[str, Any]]:
|
146 |
+
"""Create standardized error response"""
|
147 |
+
error_prompt = "❌ Processing failed"
|
148 |
+
error_report = f"**Error:** {error_msg}\n\nPlease try with a different image or check the logs for more details."
|
149 |
+
error_html = self._generate_score_html(0, get_score_grade(0))
|
150 |
+
|
151 |
+
metadata["success"] = False
|
152 |
+
metadata["error"] = error_msg
|
153 |
+
|
154 |
+
return error_prompt, error_report, error_html, metadata
|
155 |
+
|
156 |
+
def _generate_detailed_report(self, prompt: str, analysis_metadata: Dict[str, Any],
|
157 |
+
score: int, breakdown: Dict[str, int],
|
158 |
+
processing_time: float) -> str:
|
159 |
+
"""Generate comprehensive analysis report"""
|
160 |
+
|
161 |
+
model_used = analysis_metadata.get("model", "Unknown")
|
162 |
+
device_used = analysis_metadata.get("device", self.device_config["device"])
|
163 |
+
confidence = analysis_metadata.get("confidence", 0.0)
|
164 |
+
|
165 |
+
# Device status emoji
|
166 |
+
device_emoji = "⚡" if device_used == "cuda" else "💻"
|
167 |
+
|
168 |
+
report = f"""**Analysis Complete**
|
169 |
+
**Processing:** {device_emoji} {device_used.upper()} • {processing_time:.1f}s • Model: {model_used}
|
170 |
+
**Score:** {score}/100 • Confidence: {confidence:.0%}
|
171 |
+
|
172 |
+
**Score Breakdown:**
|
173 |
+
• **Prompt Quality:** {breakdown.get('prompt_quality', 0)}/30 - Content detail and description
|
174 |
+
• **Technical Details:** {breakdown.get('technical_details', 0)}/25 - Camera and photography settings
|
175 |
+
• **Artistic Value:** {breakdown.get('artistic_value', 0)}/25 - Creative elements
|
176 |
+
• **FLUX Optimization:** {breakdown.get('flux_optimization', 0)}/20 - Platform optimizations
|
177 |
+
|
178 |
+
**Analysis Summary:**
|
179 |
+
**Description Length:** {len(prompt)} characters
|
180 |
+
**Model Used:** {analysis_metadata.get('model', 'N/A')}
|
181 |
+
|
182 |
+
**Applied Optimizations:**
|
183 |
+
✅ Camera settings added
|
184 |
+
✅ Lighting configuration applied
|
185 |
+
✅ Technical parameters optimized
|
186 |
+
✅ FLUX rules implemented
|
187 |
+
✅ Content cleaned and enhanced
|
188 |
+
|
189 |
+
**Performance:**
|
190 |
+
• **Processing Time:** {processing_time:.1f}s
|
191 |
+
• **Device:** {device_used.upper()}
|
192 |
+
• **Model Confidence:** {confidence:.0%}
|
193 |
+
|
194 |
+
**Frame 0 Laboratory for MIA**"""
|
195 |
+
|
196 |
+
return report
|
197 |
+
|
198 |
+
def _generate_score_html(self, score: int, grade_info: Dict[str, str]) -> str:
|
199 |
+
"""Generate HTML for score display"""
|
200 |
+
|
201 |
+
html = f'''
|
202 |
+
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {grade_info["color"]}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
|
203 |
+
<div style="font-size: 3rem; font-weight: 800; color: {grade_info["color"]}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
|
204 |
+
<div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade_info["grade"]}</div>
|
205 |
+
<div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">FLUX Quality Score</div>
|
206 |
+
</div>
|
207 |
+
'''
|
208 |
+
|
209 |
+
return html
|
210 |
+
|
211 |
+
def _update_stats(self, processing_time: float, success: bool) -> None:
|
212 |
+
"""Update processing statistics"""
|
213 |
+
self.processing_stats["total_processed"] += 1
|
214 |
+
|
215 |
+
if success:
|
216 |
+
self.processing_stats["successful_analyses"] += 1
|
217 |
+
else:
|
218 |
+
self.processing_stats["failed_analyses"] += 1
|
219 |
+
|
220 |
+
# Update rolling average of processing time
|
221 |
+
current_avg = self.processing_stats["average_processing_time"]
|
222 |
+
total_count = self.processing_stats["total_processed"]
|
223 |
+
|
224 |
+
self.processing_stats["average_processing_time"] = (
|
225 |
+
(current_avg * (total_count - 1) + processing_time) / total_count
|
226 |
+
)
|
227 |
+
|
228 |
+
def get_stats(self) -> Dict[str, Any]:
|
229 |
+
"""Get current processing statistics"""
|
230 |
+
stats = self.processing_stats.copy()
|
231 |
+
|
232 |
+
if stats["total_processed"] > 0:
|
233 |
+
stats["success_rate"] = stats["successful_analyses"] / stats["total_processed"]
|
234 |
+
else:
|
235 |
+
stats["success_rate"] = 0.0
|
236 |
+
|
237 |
+
stats["device_info"] = self.device_config
|
238 |
+
|
239 |
+
return stats
|
240 |
+
|
241 |
+
def reset_stats(self) -> None:
|
242 |
+
"""Reset processing statistics"""
|
243 |
+
self.processing_stats = {
|
244 |
+
"total_processed": 0,
|
245 |
+
"successful_analyses": 0,
|
246 |
+
"failed_analyses": 0,
|
247 |
+
"average_processing_time": 0.0
|
248 |
+
}
|
249 |
+
logger.info("Processing statistics reset")
|
250 |
+
|
251 |
+
|
252 |
+
class BatchProcessor:
|
253 |
+
"""Handle batch processing of multiple images"""
|
254 |
+
|
255 |
+
def __init__(self, optimizer: FluxOptimizer):
|
256 |
+
self.optimizer = optimizer
|
257 |
+
self.batch_results = []
|
258 |
+
|
259 |
+
def process_batch(self, images: list) -> list:
|
260 |
+
"""Process multiple images in batch"""
|
261 |
+
results = []
|
262 |
+
|
263 |
+
for i, image in enumerate(images):
|
264 |
+
logger.info(f"Processing batch item {i+1}/{len(images)}")
|
265 |
+
|
266 |
+
try:
|
267 |
+
result = self.optimizer.process_image(image)
|
268 |
+
results.append({
|
269 |
+
"index": i,
|
270 |
+
"success": result[3]["success"],
|
271 |
+
"result": result
|
272 |
+
})
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
logger.error(f"Batch item {i} failed: {e}")
|
276 |
+
results.append({
|
277 |
+
"index": i,
|
278 |
+
"success": False,
|
279 |
+
"error": str(e)
|
280 |
+
})
|
281 |
+
|
282 |
+
self.batch_results = results
|
283 |
+
return results
|
284 |
+
|
285 |
+
def get_batch_summary(self) -> Dict[str, Any]:
|
286 |
+
"""Get summary of batch processing results"""
|
287 |
+
if not self.batch_results:
|
288 |
+
return {"total": 0, "successful": 0, "failed": 0}
|
289 |
+
|
290 |
+
successful = sum(1 for r in self.batch_results if r["success"])
|
291 |
+
total = len(self.batch_results)
|
292 |
+
|
293 |
+
return {
|
294 |
+
"total": total,
|
295 |
+
"successful": successful,
|
296 |
+
"failed": total - successful,
|
297 |
+
"success_rate": successful / total if total > 0 else 0.0
|
298 |
+
}
|
299 |
+
|
300 |
+
|
301 |
+
# Global optimizer instance
|
302 |
+
flux_optimizer = FluxOptimizer()
|
303 |
+
|
304 |
+
|
305 |
+
def process_image_simple(image: Any, model_name: str = None) -> Tuple[str, str, str]:
|
306 |
+
"""
|
307 |
+
Simple interface for image processing
|
308 |
+
|
309 |
+
Args:
|
310 |
+
image: Input image
|
311 |
+
model_name: Optional model name
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
Tuple of (prompt, report, score_html)
|
315 |
+
"""
|
316 |
+
if model_name and model_name != flux_optimizer.model_name:
|
317 |
+
# Create temporary optimizer with specified model
|
318 |
+
temp_optimizer = FluxOptimizer(model_name)
|
319 |
+
prompt, report, score_html, _ = temp_optimizer.process_image(image)
|
320 |
+
else:
|
321 |
+
prompt, report, score_html, _ = flux_optimizer.process_image(image)
|
322 |
+
|
323 |
+
return prompt, report, score_html
|
324 |
+
|
325 |
+
|
326 |
+
# Export main components
|
327 |
+
__all__ = [
|
328 |
+
"FluxOptimizer",
|
329 |
+
"BatchProcessor",
|
330 |
+
"flux_optimizer",
|
331 |
+
"process_image_simple"
|
332 |
+
]
|