|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
from datetime import datetime, timedelta |
|
from simple_salesforce import Salesforce |
|
from transformers import pipeline |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph |
|
from reportlab.lib import colors |
|
from reportlab.lib.styles import getSampleStyleSheet |
|
from utils import fetch_salesforce_data, detect_anomalies, generate_pdf_report |
|
|
|
|
|
st.set_page_config(page_title="LabOps Dashboard", layout="wide") |
|
|
|
|
|
sf = Salesforce( |
|
username=st.secrets["sf_username"], |
|
password=st.secrets["sf_password"], |
|
security_token=st.secrets["sf_security_token"] |
|
) |
|
|
|
|
|
anomaly_detector = pipeline("text-classification", model="bert-base-uncased", tokenizer="bert-base-uncased") |
|
|
|
def main(): |
|
st.title("Multi-Device LabOps Dashboard") |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
lab_site = st.selectbox("Select Lab Site", ["All", "Lab1", "Lab2", "Lab3"]) |
|
with col2: |
|
equipment_type = st.selectbox("Equipment Type", ["All", "Cell Analyzer", "Weight Log", "UV Verification"]) |
|
with col3: |
|
date_range = st.date_input("Date Range", [datetime.now() - timedelta(days=7), datetime.now()]) |
|
|
|
|
|
query = f""" |
|
SELECT Equipment__c, Log_Timestamp__c, Status__c, Usage_Count__c |
|
FROM SmartLog__c |
|
WHERE Log_Timestamp__c >= {date_range[0].strftime('%Y-%m-%d')} |
|
AND Log_Timestamp__c <= {date_range[1].strftime('%Y-%m-%d')} |
|
""" |
|
if lab_site != "All": |
|
query += f" AND Lab__c = '{lab_site}'" |
|
if equipment_type != "All": |
|
query += f" AND Equipment_Type__c = '{equipment_type}'" |
|
|
|
data = fetch_salesforce_data(sf, query) |
|
df = pd.DataFrame(data) |
|
|
|
if df.empty: |
|
st.warning("No data available for the selected filters.") |
|
return |
|
|
|
|
|
df["Anomaly"] = df["Status__c"].apply(lambda x: detect_anomalies(x, anomaly_detector)) |
|
|
|
|
|
st.subheader("Device Status") |
|
for equipment in df["Equipment__c"].unique(): |
|
device_data = df[df["Equipment__c"] == equipment] |
|
latest_log = device_data.iloc[-1] |
|
anomaly = "⚠️ Anomaly" if latest_log["Anomaly"] == "POSITIVE" else "✅ Normal" |
|
st.markdown(f""" |
|
**{equipment}** | Health: {latest_log["Status__c"]} | Usage: {latest_log["Usage_Count__c"]} | Last Log: {latest_log["Log_Timestamp__c"]} | {anomaly} |
|
""") |
|
|
|
|
|
st.subheader("Usage Trends") |
|
fig = px.line(df, x="Log_Timestamp__c", y="Usage_Count__c", color="Equipment__c", title="Daily Usage Trends") |
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
downtime_df = df[df["Status__c"] == "Down"] |
|
if not downtime_df.empty: |
|
fig_downtime = px.histogram(downtime_df, x="Log_Timestamp__c", color="Equipment__c", title="Downtime Patterns") |
|
st.plotly_chart(fig_downtime, use_container_width=True) |
|
|
|
|
|
st.subheader("AMC Reminders") |
|
amc_query = "SELECT Equipment__c, AMC_Expiry_Date__c FROM Equipment__c WHERE AMC_Expiry_Date__c <= NEXT_N_DAYS:14" |
|
amc_data = fetch_salesforce_data(sf, amc_query) |
|
for record in amc_data: |
|
st.write(f"Equipment {record['Equipment__c']} - AMC Expiry: {record['AMC_Expiry_Date__c']}") |
|
|
|
|
|
if st.button("Export PDF Report"): |
|
pdf_file = generate_pdf_report(df, lab_site, equipment_type, date_range) |
|
with open(pdf_file, "rb") as f: |
|
st.download_button("Download PDF", f, file_name="LabOps_Report.pdf") |
|
|
|
if __name__ == "__main__": |
|
main() |