Update app.py
Browse files
app.py
CHANGED
|
@@ -1,36 +1,95 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
| 9 |
st.set_page_config(page_title="LabOps Dashboard", layout="wide")
|
| 10 |
-
st.title("π Multi-Device LabOps Dashboard")
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
st.subheader("π Uploaded Logs")
|
| 18 |
-
st.dataframe(df.head())
|
| 19 |
-
|
| 20 |
-
st.subheader("π Daily Usage Chart")
|
| 21 |
-
st.pyplot(plot_usage(df))
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
st.
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
st.success("PDF report generated and saved.")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
from datetime import datetime, timedelta
|
| 5 |
+
from simple_salesforce import Salesforce
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from reportlab.lib.pagesizes import letter
|
| 8 |
+
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph
|
| 9 |
+
from reportlab.lib import colors
|
| 10 |
+
from reportlab.lib.styles import getSampleStyleSheet
|
| 11 |
+
from utils import fetch_salesforce_data, detect_anomalies, generate_pdf_report
|
| 12 |
|
| 13 |
+
# Streamlit app configuration
|
| 14 |
st.set_page_config(page_title="LabOps Dashboard", layout="wide")
|
|
|
|
| 15 |
|
| 16 |
+
# Salesforce authentication (replace with your credentials)
|
| 17 |
+
sf = Salesforce(
|
| 18 |
+
username=st.secrets["sf_username"],
|
| 19 |
+
password=st.secrets["sf_password"],
|
| 20 |
+
security_token=st.secrets["sf_security_token"]
|
| 21 |
+
)
|
| 22 |
|
| 23 |
+
# Initialize Hugging Face anomaly detection pipeline
|
| 24 |
+
anomaly_detector = pipeline("text-classification", model="bert-base-uncased", tokenizer="bert-base-uncased")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
def main():
|
| 27 |
+
st.title("Multi-Device LabOps Dashboard")
|
| 28 |
+
|
| 29 |
+
# Filters
|
| 30 |
+
col1, col2, col3 = st.columns(3)
|
| 31 |
+
with col1:
|
| 32 |
+
lab_site = st.selectbox("Select Lab Site", ["All", "Lab1", "Lab2", "Lab3"])
|
| 33 |
+
with col2:
|
| 34 |
+
equipment_type = st.selectbox("Equipment Type", ["All", "Cell Analyzer", "Weight Log", "UV Verification"])
|
| 35 |
+
with col3:
|
| 36 |
+
date_range = st.date_input("Date Range", [datetime.now() - timedelta(days=7), datetime.now()])
|
| 37 |
+
|
| 38 |
+
# Fetch data from Salesforce
|
| 39 |
+
query = f"""
|
| 40 |
+
SELECT Equipment__c, Log_Timestamp__c, Status__c, Usage_Count__c
|
| 41 |
+
FROM SmartLog__c
|
| 42 |
+
WHERE Log_Timestamp__c >= {date_range[0].strftime('%Y-%m-%d')}
|
| 43 |
+
AND Log_Timestamp__c <= {date_range[1].strftime('%Y-%m-%d')}
|
| 44 |
+
"""
|
| 45 |
+
if lab_site != "All":
|
| 46 |
+
query += f" AND Lab__c = '{lab_site}'"
|
| 47 |
+
if equipment_type != "All":
|
| 48 |
+
query += f" AND Equipment_Type__c = '{equipment_type}'"
|
| 49 |
+
|
| 50 |
+
data = fetch_salesforce_data(sf, query)
|
| 51 |
+
df = pd.DataFrame(data)
|
| 52 |
+
|
| 53 |
+
if df.empty:
|
| 54 |
+
st.warning("No data available for the selected filters.")
|
| 55 |
+
return
|
| 56 |
+
|
| 57 |
+
# Detect anomalies using Hugging Face
|
| 58 |
+
df["Anomaly"] = df["Status__c"].apply(lambda x: detect_anomalies(x, anomaly_detector))
|
| 59 |
+
|
| 60 |
+
# Device Cards
|
| 61 |
+
st.subheader("Device Status")
|
| 62 |
+
for equipment in df["Equipment__c"].unique():
|
| 63 |
+
device_data = df[df["Equipment__c"] == equipment]
|
| 64 |
+
latest_log = device_data.iloc[-1]
|
| 65 |
+
anomaly = "β οΈ Anomaly" if latest_log["Anomaly"] == "POSITIVE" else "β
Normal"
|
| 66 |
+
st.markdown(f"""
|
| 67 |
+
**{equipment}** | Health: {latest_log["Status__c"]} | Usage: {latest_log["Usage_Count__c"]} | Last Log: {latest_log["Log_Timestamp__c"]} | {anomaly}
|
| 68 |
+
""")
|
| 69 |
+
|
| 70 |
+
# Usage Chart
|
| 71 |
+
st.subheader("Usage Trends")
|
| 72 |
+
fig = px.line(df, x="Log_Timestamp__c", y="Usage_Count__c", color="Equipment__c", title="Daily Usage Trends")
|
| 73 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 74 |
+
|
| 75 |
+
# Downtime Chart
|
| 76 |
+
downtime_df = df[df["Status__c"] == "Down"]
|
| 77 |
+
if not downtime_df.empty:
|
| 78 |
+
fig_downtime = px.histogram(downtime_df, x="Log_Timestamp__c", color="Equipment__c", title="Downtime Patterns")
|
| 79 |
+
st.plotly_chart(fig_downtime, use_container_width=True)
|
| 80 |
+
|
| 81 |
+
# AMC Reminders
|
| 82 |
+
st.subheader("AMC Reminders")
|
| 83 |
+
amc_query = "SELECT Equipment__c, AMC_Expiry_Date__c FROM Equipment__c WHERE AMC_Expiry_Date__c <= NEXT_N_DAYS:14"
|
| 84 |
+
amc_data = fetch_salesforce_data(sf, amc_query)
|
| 85 |
+
for record in amc_data:
|
| 86 |
+
st.write(f"Equipment {record['Equipment__c']} - AMC Expiry: {record['AMC_Expiry_Date__c']}")
|
| 87 |
+
|
| 88 |
+
# Export PDF
|
| 89 |
+
if st.button("Export PDF Report"):
|
| 90 |
+
pdf_file = generate_pdf_report(df, lab_site, equipment_type, date_range)
|
| 91 |
+
with open(pdf_file, "rb") as f:
|
| 92 |
+
st.download_button("Download PDF", f, file_name="LabOps_Report.pdf")
|
| 93 |
|
| 94 |
+
if __name__ == "__main__":
|
| 95 |
+
main()
|
|
|